Author: Dhan Pal Singh
Publisher:
ISBN: 9783642715143
Category : Agriculture
Languages : en
Pages : 0
Book Description
The object of this book is to provide insight into the principles of disease and insect-pest resistance and to elaborate the resistance breeding practices with specific examples from as many different crops and parasites as possible. It is assumed that the readers are already in possession of some knowledge of plant pathogens and insect pests and their genetics from standard courses and text books. The book can be used for teaching an advanced course on the subject, such as in university lectures to graduate students. In addition, it should be useful as a reference book to plant pathologists, entomologists and plant breeders engaged in developing varieties resistant to harmful paraƯ sites. I wish to express my sincere thanks to Dr. B.D. Singh, Banaras Hindu University, Varanasi, India, Dr. D. Sharma and Dr. S. Dwivedi, ICRISAT, Hyderabad, India; Dr. I.S. Singh and Dr. A.K. Bhattacharya, G.B. Pant UniƯ versity of Agriculture and Technology, Pantnagar, India, who made comments on some sections of the book. Thanks are also due to Dr. D.N. Chaudhary, Dr. R.P.S. Verma and Mr. K.R. Reddy, who have given valuable help in one way or another in the publicaƯ tion of this book. I express my sincere thanks to Professor 1.S. Nanda, ExƯ Professor Plant Breeding in G.B. Pant University of Agriculture and TechnoƯ logy, Pantnagar, India for inspiring me to write this book. However, responƯ sibility for errors and misinterpretations is entirely mine.
Breeding for Resistance to Diseases and Insect Pests
Author: Dhan Pal Singh
Publisher:
ISBN: 9783642715143
Category : Agriculture
Languages : en
Pages : 0
Book Description
The object of this book is to provide insight into the principles of disease and insect-pest resistance and to elaborate the resistance breeding practices with specific examples from as many different crops and parasites as possible. It is assumed that the readers are already in possession of some knowledge of plant pathogens and insect pests and their genetics from standard courses and text books. The book can be used for teaching an advanced course on the subject, such as in university lectures to graduate students. In addition, it should be useful as a reference book to plant pathologists, entomologists and plant breeders engaged in developing varieties resistant to harmful paraƯ sites. I wish to express my sincere thanks to Dr. B.D. Singh, Banaras Hindu University, Varanasi, India, Dr. D. Sharma and Dr. S. Dwivedi, ICRISAT, Hyderabad, India; Dr. I.S. Singh and Dr. A.K. Bhattacharya, G.B. Pant UniƯ versity of Agriculture and Technology, Pantnagar, India, who made comments on some sections of the book. Thanks are also due to Dr. D.N. Chaudhary, Dr. R.P.S. Verma and Mr. K.R. Reddy, who have given valuable help in one way or another in the publicaƯ tion of this book. I express my sincere thanks to Professor 1.S. Nanda, ExƯ Professor Plant Breeding in G.B. Pant University of Agriculture and TechnoƯ logy, Pantnagar, India for inspiring me to write this book. However, responƯ sibility for errors and misinterpretations is entirely mine.
Publisher:
ISBN: 9783642715143
Category : Agriculture
Languages : en
Pages : 0
Book Description
The object of this book is to provide insight into the principles of disease and insect-pest resistance and to elaborate the resistance breeding practices with specific examples from as many different crops and parasites as possible. It is assumed that the readers are already in possession of some knowledge of plant pathogens and insect pests and their genetics from standard courses and text books. The book can be used for teaching an advanced course on the subject, such as in university lectures to graduate students. In addition, it should be useful as a reference book to plant pathologists, entomologists and plant breeders engaged in developing varieties resistant to harmful paraƯ sites. I wish to express my sincere thanks to Dr. B.D. Singh, Banaras Hindu University, Varanasi, India, Dr. D. Sharma and Dr. S. Dwivedi, ICRISAT, Hyderabad, India; Dr. I.S. Singh and Dr. A.K. Bhattacharya, G.B. Pant UniƯ versity of Agriculture and Technology, Pantnagar, India, who made comments on some sections of the book. Thanks are also due to Dr. D.N. Chaudhary, Dr. R.P.S. Verma and Mr. K.R. Reddy, who have given valuable help in one way or another in the publicaƯ tion of this book. I express my sincere thanks to Professor 1.S. Nanda, ExƯ Professor Plant Breeding in G.B. Pant University of Agriculture and TechnoƯ logy, Pantnagar, India for inspiring me to write this book. However, responƯ sibility for errors and misinterpretations is entirely mine.
Breeding Insect Resistant Crops for Sustainable Agriculture
Author: Ramesh Arora
Publisher: Springer
ISBN: 9811060568
Category : Science
Languages : en
Pages : 433
Book Description
This book reviews and synthesizes the recent advances in exploiting host plant resistance to insects, highlighting the role of molecular techniques in breeding insect resistant crops. It also provides an overview of the fascinating field of insect-plant relationships, which is fundamental to the study of host-plant resistance to insects. Further, it discusses the conventional and molecular techniques utilized/useful in breeding for resistance to insect-pests including back-cross breeding, modified population improvement methods for insect resistance, marker-assisted backcrossing to expedite the breeding process, identification and validation of new insect-resistance genes and their potential for utilization, genomics, metabolomics, transgenesis and RNAi. Lastly, it analyzes the successes, limitations and prospects for the development of insect-resistant cultivars of rice, maize, sorghum and millet, cotton, rapeseed, legumes and fruit crops, and highlights strategies for management of insect biotypes that limit the success and durability of insect-resistant cultivators in the field. Arthropod pests act as major constraints in the agro-ecosystem. It has been estimated that arthropod pests may be destroying around one-fifth of the global agricultural production/potential production every year. Further, the losses are considerably higher in the developing tropics of Asia and Africa, which are already battling severe food shortage. Integrated pest management (IPM) has emerged as the dominant paradigm for minimizing damage by the insects and non-insect pests over the last 50 years. Pest resistant cultivars represent one of the most environmentally benign, economically viable and ecologically sustainable options for utilization in IPM programs. Hundreds of insect-resistant cultivars of rice, wheat, maize, sorghum, cotton, sugarcane and other crops have been developed worldwide and are extensively grown for increasing and/or stabilizing crop productivity. The annual economic value of arthropod resistance genes developed in global agriculture has been estimated to be greater than US$ 2 billion Despite the impressive achievements and even greater potential in minimizing pest- related losses, only a handful of books have been published on the topic of host-plant resistance to insects. This book fills this wide gap in the literature on breeding insect- resistant crops. It is aimed at plant breeders, entomologists, plant biotechnologists and IPM experts, as well as those working on sustainable agriculture and food security.
Publisher: Springer
ISBN: 9811060568
Category : Science
Languages : en
Pages : 433
Book Description
This book reviews and synthesizes the recent advances in exploiting host plant resistance to insects, highlighting the role of molecular techniques in breeding insect resistant crops. It also provides an overview of the fascinating field of insect-plant relationships, which is fundamental to the study of host-plant resistance to insects. Further, it discusses the conventional and molecular techniques utilized/useful in breeding for resistance to insect-pests including back-cross breeding, modified population improvement methods for insect resistance, marker-assisted backcrossing to expedite the breeding process, identification and validation of new insect-resistance genes and their potential for utilization, genomics, metabolomics, transgenesis and RNAi. Lastly, it analyzes the successes, limitations and prospects for the development of insect-resistant cultivars of rice, maize, sorghum and millet, cotton, rapeseed, legumes and fruit crops, and highlights strategies for management of insect biotypes that limit the success and durability of insect-resistant cultivators in the field. Arthropod pests act as major constraints in the agro-ecosystem. It has been estimated that arthropod pests may be destroying around one-fifth of the global agricultural production/potential production every year. Further, the losses are considerably higher in the developing tropics of Asia and Africa, which are already battling severe food shortage. Integrated pest management (IPM) has emerged as the dominant paradigm for minimizing damage by the insects and non-insect pests over the last 50 years. Pest resistant cultivars represent one of the most environmentally benign, economically viable and ecologically sustainable options for utilization in IPM programs. Hundreds of insect-resistant cultivars of rice, wheat, maize, sorghum, cotton, sugarcane and other crops have been developed worldwide and are extensively grown for increasing and/or stabilizing crop productivity. The annual economic value of arthropod resistance genes developed in global agriculture has been estimated to be greater than US$ 2 billion Despite the impressive achievements and even greater potential in minimizing pest- related losses, only a handful of books have been published on the topic of host-plant resistance to insects. This book fills this wide gap in the literature on breeding insect- resistant crops. It is aimed at plant breeders, entomologists, plant biotechnologists and IPM experts, as well as those working on sustainable agriculture and food security.
Host Plant Resistance to Insects
Author: Niranjan Panda
Publisher: Oxford University Press, USA
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 456
Book Description
Historical overview of host plant resistance; Crop plant and insect diversity; Secondary plant metabolites for insect resistance; Insect - plant interactions; Host plant selection; Mechanisms of resistance; Factors affecting expression of resistance; Screening for insect resistance; Plant resistance and insect pest management; Genetics of resistance to insects; Breeding for resistance to insects.
Publisher: Oxford University Press, USA
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 456
Book Description
Historical overview of host plant resistance; Crop plant and insect diversity; Secondary plant metabolites for insect resistance; Insect - plant interactions; Host plant selection; Mechanisms of resistance; Factors affecting expression of resistance; Screening for insect resistance; Plant resistance and insect pest management; Genetics of resistance to insects; Breeding for resistance to insects.
Return to Resistance
Author: Raoul A. Robinson
Publisher: IDRC
ISBN: 9780889367746
Category : Agricultural pests
Languages : en
Pages : 502
Book Description
In the tradition of Silent Spring, Raoul Robinson's Return to Resistance calls for a revolution. Traditional plant breeding techniques have led us to depend more and more on chemical pesticides to protect ourcrops. Return to Resistance shows gardeners, farmers, and plant breeders how to use a long-neglected technique to create hardy new plant varieties that are naturally resistant to pests and disease. Horizontal resistance breeding has been largely ignored in this century due to the popularity and apparent successes of the Mendelian geneticists. However the colossal, unrecognized failure of m.
Publisher: IDRC
ISBN: 9780889367746
Category : Agricultural pests
Languages : en
Pages : 502
Book Description
In the tradition of Silent Spring, Raoul Robinson's Return to Resistance calls for a revolution. Traditional plant breeding techniques have led us to depend more and more on chemical pesticides to protect ourcrops. Return to Resistance shows gardeners, farmers, and plant breeders how to use a long-neglected technique to create hardy new plant varieties that are naturally resistant to pests and disease. Horizontal resistance breeding has been largely ignored in this century due to the popularity and apparent successes of the Mendelian geneticists. However the colossal, unrecognized failure of m.
Breeding Plants Resistant to Insects
Author: Fowden G. Maxwell
Publisher: John Wiley & Sons
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 712
Book Description
Plant resistance to insects. Types and classification of resistance. Biochemical and morphological bases of resistance. Genetic factors affecting expession and stability of resistance. Environmental factors influencing the magnitude and expression of resistance. Insect behavior and plant resistance. Insects and plant pathogens. The pathosystem concept. The problem of variable pests. The use of plant incect models. Resistant varieties in pest management systems. Germplasm resources and needs. Breeding systems for resistance breeding for resistance in specific crops. Breeding approches in alfalfa. Breeding approaches in cassava. Breeding cotton for resistance to insect pests. Breeding approaches in rice. Breeding sorghums resistant to insects. Breeding forest trees resistance to insects. Breeding approaches in wheat. Future opportunities and directions.
Publisher: John Wiley & Sons
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 712
Book Description
Plant resistance to insects. Types and classification of resistance. Biochemical and morphological bases of resistance. Genetic factors affecting expession and stability of resistance. Environmental factors influencing the magnitude and expression of resistance. Insect behavior and plant resistance. Insects and plant pathogens. The pathosystem concept. The problem of variable pests. The use of plant incect models. Resistant varieties in pest management systems. Germplasm resources and needs. Breeding systems for resistance breeding for resistance in specific crops. Breeding approches in alfalfa. Breeding approaches in cassava. Breeding cotton for resistance to insect pests. Breeding approaches in rice. Breeding sorghums resistant to insects. Breeding forest trees resistance to insects. Breeding approaches in wheat. Future opportunities and directions.
Breeding Crops with Resistance to Diseases and Pests
Author: Rients E. Niks
Publisher: Brill Wageningen Academic
ISBN: 9789086863280
Category : Plant breeding
Languages : en
Pages : 0
Book Description
This book describes the most basic elements in plant pathogen interactions and defence strategies in plants. The scientific background is explained as far as it is relevant for breeders to make sensible choices in designing and running their breeding work. It may also be used as a manual for disease resistance breeding.
Publisher: Brill Wageningen Academic
ISBN: 9789086863280
Category : Plant breeding
Languages : en
Pages : 0
Book Description
This book describes the most basic elements in plant pathogen interactions and defence strategies in plants. The scientific background is explained as far as it is relevant for breeders to make sensible choices in designing and running their breeding work. It may also be used as a manual for disease resistance breeding.
Genetic Evaluation for Insect Resistance in Rice
Author: E. A. Heinrichs
Publisher: Int. Rice Res. Inst.
ISBN: 9711041103
Category : Technology & Engineering
Languages : en
Pages : 357
Book Description
Publisher: Int. Rice Res. Inst.
ISBN: 9711041103
Category : Technology & Engineering
Languages : en
Pages : 357
Book Description
Sustainable Food Production
Author: Paul Christou
Publisher: Springer
ISBN: 9781461457961
Category : Technology & Engineering
Languages : en
Pages : 1869
Book Description
Gathering some 90 entries from the Encyclopedia of Sustainability Science and Technology, this book covers animal breeding and genetics for food, crop science and technology, ocean farming and sustainable aquaculture, transgenic livestock for food and more.
Publisher: Springer
ISBN: 9781461457961
Category : Technology & Engineering
Languages : en
Pages : 1869
Book Description
Gathering some 90 entries from the Encyclopedia of Sustainability Science and Technology, this book covers animal breeding and genetics for food, crop science and technology, ocean farming and sustainable aquaculture, transgenic livestock for food and more.
Plant Breeding Reviews, Volume 45
Author: Irwin Goldman
Publisher: John Wiley & Sons
ISBN: 1119828228
Category : Science
Languages : en
Pages : 477
Book Description
Plant Breeding Reviews presents state-of-the-art reviews on plant genetics and the breeding of all types of crops by both traditional means and molecular methods. Many of the crops widely grown today stem from a very narrow genetic base; understanding and preserving crop genetic resources is vital to the security of food systems worldwide. The emphasis of the series is on methodology, a fundamental understanding of crop genetics, and applications to major crops.
Publisher: John Wiley & Sons
ISBN: 1119828228
Category : Science
Languages : en
Pages : 477
Book Description
Plant Breeding Reviews presents state-of-the-art reviews on plant genetics and the breeding of all types of crops by both traditional means and molecular methods. Many of the crops widely grown today stem from a very narrow genetic base; understanding and preserving crop genetic resources is vital to the security of food systems worldwide. The emphasis of the series is on methodology, a fundamental understanding of crop genetics, and applications to major crops.
Plant Breeding for Biotic Stress Resistance
Author: Roberto Fritsche-Neto
Publisher: Springer Science & Business Media
ISBN: 3642330878
Category : Science
Languages : en
Pages : 166
Book Description
Experience shows that biotic stresses occur with different levels of intensity in nearly all agricultural areas around the world. The occurrence of insects, weeds and diseases caused by fungi, bacteria or viruses may not be relevant in a specific year but they usually harm yield in most years. Global warming has shifted the paradigm of biotic stresses in most growing areas, especially in the tropical countries, sparking intense discussions in scientific forums. This book was written with the idea of collecting in a single publication the most recent advances and discoveries concerning breeding for biotic stresses, covering all major classes of biotic challenges to agriculture and food production. Accordingly, it presents the state-of-the-art in plant stresses caused by all microorganisms, weeds and insects and how to breed for them. Complementing Plant Breeding for Abiotic Stress Tolerance, this book was written for scientists and students interested in learning how to breed for biotic stress scenarios, allowing them to develop a greater understanding of the basic mechanisms of resistance to biotic stresses and develop resistant cultivars.
Publisher: Springer Science & Business Media
ISBN: 3642330878
Category : Science
Languages : en
Pages : 166
Book Description
Experience shows that biotic stresses occur with different levels of intensity in nearly all agricultural areas around the world. The occurrence of insects, weeds and diseases caused by fungi, bacteria or viruses may not be relevant in a specific year but they usually harm yield in most years. Global warming has shifted the paradigm of biotic stresses in most growing areas, especially in the tropical countries, sparking intense discussions in scientific forums. This book was written with the idea of collecting in a single publication the most recent advances and discoveries concerning breeding for biotic stresses, covering all major classes of biotic challenges to agriculture and food production. Accordingly, it presents the state-of-the-art in plant stresses caused by all microorganisms, weeds and insects and how to breed for them. Complementing Plant Breeding for Abiotic Stress Tolerance, this book was written for scientists and students interested in learning how to breed for biotic stress scenarios, allowing them to develop a greater understanding of the basic mechanisms of resistance to biotic stresses and develop resistant cultivars.