Author: Jürgen Jost
Publisher: American Mathematical Soc.
ISBN: 0821843362
Category : Mathematics
Languages : en
Pages : 110
Book Description
This book presents a mathematical treatment of Bosonic string theory from the point of view of global geometry. As motivation, Jost presents the theory of point particles and Feynman path integrals. He provides detailed background material, including the geometry of Teichmuller space, the conformal and complex geometry of Riemann surfaces, and the subtleties of boundary regularity questions. The high point is the description of the partition function for Bosonic strings as a finite-dimensional integral over a moduli space of Riemann surfaces. Jost concludes with some topics related to open and closed strings and $D$-branes. Bosonic Strings is suitable for graduate students and researchers interested in the mathematics underlying string theory.
Bosonic Strings: A Mathematical Treatment
Author: Jürgen Jost
Publisher: American Mathematical Soc.
ISBN: 0821843362
Category : Mathematics
Languages : en
Pages : 110
Book Description
This book presents a mathematical treatment of Bosonic string theory from the point of view of global geometry. As motivation, Jost presents the theory of point particles and Feynman path integrals. He provides detailed background material, including the geometry of Teichmuller space, the conformal and complex geometry of Riemann surfaces, and the subtleties of boundary regularity questions. The high point is the description of the partition function for Bosonic strings as a finite-dimensional integral over a moduli space of Riemann surfaces. Jost concludes with some topics related to open and closed strings and $D$-branes. Bosonic Strings is suitable for graduate students and researchers interested in the mathematics underlying string theory.
Publisher: American Mathematical Soc.
ISBN: 0821843362
Category : Mathematics
Languages : en
Pages : 110
Book Description
This book presents a mathematical treatment of Bosonic string theory from the point of view of global geometry. As motivation, Jost presents the theory of point particles and Feynman path integrals. He provides detailed background material, including the geometry of Teichmuller space, the conformal and complex geometry of Riemann surfaces, and the subtleties of boundary regularity questions. The high point is the description of the partition function for Bosonic strings as a finite-dimensional integral over a moduli space of Riemann surfaces. Jost concludes with some topics related to open and closed strings and $D$-branes. Bosonic Strings is suitable for graduate students and researchers interested in the mathematics underlying string theory.
Bosonic Strings
Author: Jürgen Jost
Publisher: American Mathematical Society(RI)
ISBN: 9780821826447
Category : String models
Languages : en
Pages : 0
Book Description
Presented in this book is a mathematical treatment of Bosonic string theory from the point of view of global geometry. As motivation, the author presents the theory of point particles and Feynman path integrals. He considers the theory of strings as a quantization of the classical Plateau problem for minimal surfaces. The conformal variance of the relevant functional, the Polyakov action or (in mathematical terminology) the Dirichlet integral, leads to an anomaly in the process of quantization. The mathematical concepts needed to resolve this anomaly via the Faddeev-Popov method are introduced, specifically the geometry of the Teichmuuller and moduli spaces of Riemann surfaces and the corresponding function spaces. Other useful tools are the algebraic geometry of Riemann surfaces and infinite-dimensional determinants Also discussed are the boundary regularity questions. The main result is a presentation of the string partition function as an integral over a moduli space of Riemann surfaces.
Publisher: American Mathematical Society(RI)
ISBN: 9780821826447
Category : String models
Languages : en
Pages : 0
Book Description
Presented in this book is a mathematical treatment of Bosonic string theory from the point of view of global geometry. As motivation, the author presents the theory of point particles and Feynman path integrals. He considers the theory of strings as a quantization of the classical Plateau problem for minimal surfaces. The conformal variance of the relevant functional, the Polyakov action or (in mathematical terminology) the Dirichlet integral, leads to an anomaly in the process of quantization. The mathematical concepts needed to resolve this anomaly via the Faddeev-Popov method are introduced, specifically the geometry of the Teichmuuller and moduli spaces of Riemann surfaces and the corresponding function spaces. Other useful tools are the algebraic geometry of Riemann surfaces and infinite-dimensional determinants Also discussed are the boundary regularity questions. The main result is a presentation of the string partition function as an integral over a moduli space of Riemann surfaces.
Topology, $C^*$-Algebras, and String Duality
Author: Jonathan R_osenberg
Publisher: American Mathematical Soc.
ISBN: 0821849220
Category : Mathematics
Languages : en
Pages : 122
Book Description
String theory is the leading candidate for a physical theory that combines all the fundamental forces of nature, as well as the principles of relativity and quantum mechanics, into a mathematically elegant whole. The mathematical tools used by string theorists are highly sophisticated, and cover many areas of mathematics. As with the birth of quantum theory in the early 20th century, the mathematics has benefited at least as much as the physics from the collaboration. In this book, based on CBMS lectures given at Texas Christian University, Rosenberg describes some of the most recent interplay between string dualities and topology and operator algebras. The book is an interdisciplinary approach to duality symmetries in string theory. It can be read by either mathematicians or theoretical physicists, and involves a more-or-less equal mixture of algebraic topology, operator algebras, and physics. There is also a bit of algebraic geometry, especially in the last chapter. The reader is assumed to be somewhat familiar with at least one of these four subjects, but not necessarily with all or even most of them. The main objective of the book is to show how several seemingly disparate subjects are closely linked with one another, and to give readers an overview of some areas of current research, even if this means that not everything is covered systematically.
Publisher: American Mathematical Soc.
ISBN: 0821849220
Category : Mathematics
Languages : en
Pages : 122
Book Description
String theory is the leading candidate for a physical theory that combines all the fundamental forces of nature, as well as the principles of relativity and quantum mechanics, into a mathematically elegant whole. The mathematical tools used by string theorists are highly sophisticated, and cover many areas of mathematics. As with the birth of quantum theory in the early 20th century, the mathematics has benefited at least as much as the physics from the collaboration. In this book, based on CBMS lectures given at Texas Christian University, Rosenberg describes some of the most recent interplay between string dualities and topology and operator algebras. The book is an interdisciplinary approach to duality symmetries in string theory. It can be read by either mathematicians or theoretical physicists, and involves a more-or-less equal mixture of algebraic topology, operator algebras, and physics. There is also a bit of algebraic geometry, especially in the last chapter. The reader is assumed to be somewhat familiar with at least one of these four subjects, but not necessarily with all or even most of them. The main objective of the book is to show how several seemingly disparate subjects are closely linked with one another, and to give readers an overview of some areas of current research, even if this means that not everything is covered systematically.
Quantum Mathematical Physics
Author: Felix Finster
Publisher: Birkhäuser
ISBN: 331926902X
Category : Science
Languages : en
Pages : 517
Book Description
Quantum physics has been highly successful for more than 90 years. Nevertheless, a rigorous construction of interacting quantum field theory is still missing. Moreover, it is still unclear how to combine quantum physics and general relativity in a unified physical theory. Attacking these challenging problems of contemporary physics requires highly advanced mathematical methods as well as radically new physical concepts. This book presents different physical ideas and mathematical approaches in this direction. It contains a carefully selected cross-section of lectures which took place in autumn 2014 at the sixth conference ``Quantum Mathematical Physics - A Bridge between Mathematics and Physics'' in Regensburg, Germany. In the tradition of the other proceedings covering this series of conferences, a special feature of this book is the exposition of a wide variety of approaches, with the intention to facilitate a comparison. The book is mainly addressed to mathematicians and physicists who are interested in fundamental questions of mathematical physics. It allows the reader to obtain a broad and up-to-date overview of a fascinating active research area.
Publisher: Birkhäuser
ISBN: 331926902X
Category : Science
Languages : en
Pages : 517
Book Description
Quantum physics has been highly successful for more than 90 years. Nevertheless, a rigorous construction of interacting quantum field theory is still missing. Moreover, it is still unclear how to combine quantum physics and general relativity in a unified physical theory. Attacking these challenging problems of contemporary physics requires highly advanced mathematical methods as well as radically new physical concepts. This book presents different physical ideas and mathematical approaches in this direction. It contains a carefully selected cross-section of lectures which took place in autumn 2014 at the sixth conference ``Quantum Mathematical Physics - A Bridge between Mathematics and Physics'' in Regensburg, Germany. In the tradition of the other proceedings covering this series of conferences, a special feature of this book is the exposition of a wide variety of approaches, with the intention to facilitate a comparison. The book is mainly addressed to mathematicians and physicists who are interested in fundamental questions of mathematical physics. It allows the reader to obtain a broad and up-to-date overview of a fascinating active research area.
Quantum Field Theory I: Basics in Mathematics and Physics
Author: Eberhard Zeidler
Publisher: Springer Science & Business Media
ISBN: 354034764X
Category : Science
Languages : en
Pages : 1060
Book Description
This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists, at levels ranging from advanced undergraduate students to professional scientists. The book bridges the acknowledged gap between the different languages used by mathematicians and physicists. For students of mathematics the author shows that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which goes beyond the usual curriculum in physics.
Publisher: Springer Science & Business Media
ISBN: 354034764X
Category : Science
Languages : en
Pages : 1060
Book Description
This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists, at levels ranging from advanced undergraduate students to professional scientists. The book bridges the acknowledged gap between the different languages used by mathematicians and physicists. For students of mathematics the author shows that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which goes beyond the usual curriculum in physics.
Quantum Field Theory III: Gauge Theory
Author: Eberhard Zeidler
Publisher: Springer Science & Business Media
ISBN: 3642224210
Category : Mathematics
Languages : en
Pages : 1141
Book Description
In this third volume of his modern introduction to quantum field theory, Eberhard Zeidler examines the mathematical and physical aspects of gauge theory as a principle tool for describing the four fundamental forces which act in the universe: gravitative, electromagnetic, weak interaction and strong interaction. Volume III concentrates on the classical aspects of gauge theory, describing the four fundamental forces by the curvature of appropriate fiber bundles. This must be supplemented by the crucial, but elusive quantization procedure. The book is arranged in four sections, devoted to realizing the universal principle force equals curvature: Part I: The Euclidean Manifold as a Paradigm Part II: Ariadne's Thread in Gauge Theory Part III: Einstein's Theory of Special Relativity Part IV: Ariadne's Thread in Cohomology For students of mathematics the book is designed to demonstrate that detailed knowledge of the physical background helps to reveal interesting interrelationships among diverse mathematical topics. Physics students will be exposed to a fairly advanced mathematics, beyond the level covered in the typical physics curriculum. Quantum Field Theory builds a bridge between mathematicians and physicists, based on challenging questions about the fundamental forces in the universe (macrocosmos), and in the world of elementary particles (microcosmos).
Publisher: Springer Science & Business Media
ISBN: 3642224210
Category : Mathematics
Languages : en
Pages : 1141
Book Description
In this third volume of his modern introduction to quantum field theory, Eberhard Zeidler examines the mathematical and physical aspects of gauge theory as a principle tool for describing the four fundamental forces which act in the universe: gravitative, electromagnetic, weak interaction and strong interaction. Volume III concentrates on the classical aspects of gauge theory, describing the four fundamental forces by the curvature of appropriate fiber bundles. This must be supplemented by the crucial, but elusive quantization procedure. The book is arranged in four sections, devoted to realizing the universal principle force equals curvature: Part I: The Euclidean Manifold as a Paradigm Part II: Ariadne's Thread in Gauge Theory Part III: Einstein's Theory of Special Relativity Part IV: Ariadne's Thread in Cohomology For students of mathematics the book is designed to demonstrate that detailed knowledge of the physical background helps to reveal interesting interrelationships among diverse mathematical topics. Physics students will be exposed to a fairly advanced mathematics, beyond the level covered in the typical physics curriculum. Quantum Field Theory builds a bridge between mathematicians and physicists, based on challenging questions about the fundamental forces in the universe (macrocosmos), and in the world of elementary particles (microcosmos).
Topics in Physical Mathematics
Author: Kishore Marathe
Publisher: Springer Science & Business Media
ISBN: 1848829396
Category : Mathematics
Languages : en
Pages : 458
Book Description
As many readers will know, the 20th century was a time when the fields of mathematics and the sciences were seen as two separate entities. Caused by the rapid growth of the physical sciences and an increasing abstraction in mathematical research, each party, physicists and mathematicians alike, suffered a misconception; not only of the opposition’s theoretical underpinning, but of how the two subjects could be intertwined and effectively utilized. One sub-discipline that played a part in the union of the two subjects is Theoretical Physics. Breaking it down further came the fundamental theories, Relativity and Quantum theory, and later on Yang-Mills theory. Other areas to emerge in this area are those derived from the works of Donaldson, Chern-Simons, Floer-Fukaya, and Seiberg-Witten. Aimed at a wide audience, Physical Topics in Mathematics demonstrates how various physical theories have played a crucial role in the developments of Mathematics and in particular, Geometric Topology. Issues are studied in great detail, and the book steadfastly covers the background of both Mathematics and Theoretical Physics in an effort to bring the reader to a deeper understanding of their interaction. Whilst the world of Theoretical Physics and Mathematics is boundless; it is not the intention of this book to cover its enormity. Instead, it seeks to lead the reader through the world of Physical Mathematics; leaving them with a choice of which realm they wish to visit next.
Publisher: Springer Science & Business Media
ISBN: 1848829396
Category : Mathematics
Languages : en
Pages : 458
Book Description
As many readers will know, the 20th century was a time when the fields of mathematics and the sciences were seen as two separate entities. Caused by the rapid growth of the physical sciences and an increasing abstraction in mathematical research, each party, physicists and mathematicians alike, suffered a misconception; not only of the opposition’s theoretical underpinning, but of how the two subjects could be intertwined and effectively utilized. One sub-discipline that played a part in the union of the two subjects is Theoretical Physics. Breaking it down further came the fundamental theories, Relativity and Quantum theory, and later on Yang-Mills theory. Other areas to emerge in this area are those derived from the works of Donaldson, Chern-Simons, Floer-Fukaya, and Seiberg-Witten. Aimed at a wide audience, Physical Topics in Mathematics demonstrates how various physical theories have played a crucial role in the developments of Mathematics and in particular, Geometric Topology. Issues are studied in great detail, and the book steadfastly covers the background of both Mathematics and Theoretical Physics in an effort to bring the reader to a deeper understanding of their interaction. Whilst the world of Theoretical Physics and Mathematics is boundless; it is not the intention of this book to cover its enormity. Instead, it seeks to lead the reader through the world of Physical Mathematics; leaving them with a choice of which realm they wish to visit next.
String Theory Research Progress
Author: Ferenc N. Balogh
Publisher: Nova Publishers
ISBN: 9781604560756
Category : Business & Economics
Languages : en
Pages : 246
Book Description
String theory is a model of fundamental physics whose building blocks are one-dimensional extended objects called strings, rather than the zero-dimensional point particles that form the basis for the standard model of particle physics. The phrase is often used as shorthand for Superstring theory, as well as related theories such as M-theory. By replacing the point-like particles with strings, an apparently consistent quantum theory of gravity emerges. Moreover, it may be possible to 'unify' the known natural forces (gravitational, electromagnetic, weak nuclear and strong nuclear) by describing them with the same set of equations. Studies of string theory have revealed that it predicts higher-dimensional objects called branes. String theory strongly suggests the existence of ten or eleven (in M-theory) space-time dimensions, as opposed to the usual four (three spatial and one temporal) used in relativity theory.
Publisher: Nova Publishers
ISBN: 9781604560756
Category : Business & Economics
Languages : en
Pages : 246
Book Description
String theory is a model of fundamental physics whose building blocks are one-dimensional extended objects called strings, rather than the zero-dimensional point particles that form the basis for the standard model of particle physics. The phrase is often used as shorthand for Superstring theory, as well as related theories such as M-theory. By replacing the point-like particles with strings, an apparently consistent quantum theory of gravity emerges. Moreover, it may be possible to 'unify' the known natural forces (gravitational, electromagnetic, weak nuclear and strong nuclear) by describing them with the same set of equations. Studies of string theory have revealed that it predicts higher-dimensional objects called branes. String theory strongly suggests the existence of ten or eleven (in M-theory) space-time dimensions, as opposed to the usual four (three spatial and one temporal) used in relativity theory.
Strings and Geometry
Author: Clay Mathematics Institute. Summer School
Publisher: American Mathematical Soc.
ISBN: 9780821837153
Category : Mathematics
Languages : en
Pages : 396
Book Description
Contains selection of expository and research article by lecturers at the school. Highlights current interests of researchers working at the interface between string theory and algebraic supergravity, supersymmetry, D-branes, the McKay correspondence andFourer-Mukai transform.
Publisher: American Mathematical Soc.
ISBN: 9780821837153
Category : Mathematics
Languages : en
Pages : 396
Book Description
Contains selection of expository and research article by lecturers at the school. Highlights current interests of researchers working at the interface between string theory and algebraic supergravity, supersymmetry, D-branes, the McKay correspondence andFourer-Mukai transform.
Advances in String Theory
Author: Eric R. Sharpe
Publisher: American Mathematical Soc.
ISBN: 0821847643
Category : Mathematics
Languages : en
Pages : 259
Book Description
"Over the past decade string theory has had an increasing impact on many areas of physics: high energy and hadronic physics, gravitation and cosmology, mathematical physics and even condensed matter physics. The impact has been through many major conceptual and methodological developments in quantum field theory in the past fifteen years. In addition, string theory has exerted a dramatic influence on developments in contemporary mathematics, including Gromov-Witten theory, mirror symmetry in complex and symplectic geometry, and important ramifications in enumerative geometry." "This volume is derived from a conference of younger leading practitioners around the common theme: "What is string theory?" The talks covered major current topics, both mathematical and physical, related to string theory. Graduate students and research mathematicians interested in string theory in mathematics and physics will be interested in this workshop."--BOOK JACKET.
Publisher: American Mathematical Soc.
ISBN: 0821847643
Category : Mathematics
Languages : en
Pages : 259
Book Description
"Over the past decade string theory has had an increasing impact on many areas of physics: high energy and hadronic physics, gravitation and cosmology, mathematical physics and even condensed matter physics. The impact has been through many major conceptual and methodological developments in quantum field theory in the past fifteen years. In addition, string theory has exerted a dramatic influence on developments in contemporary mathematics, including Gromov-Witten theory, mirror symmetry in complex and symplectic geometry, and important ramifications in enumerative geometry." "This volume is derived from a conference of younger leading practitioners around the common theme: "What is string theory?" The talks covered major current topics, both mathematical and physical, related to string theory. Graduate students and research mathematicians interested in string theory in mathematics and physics will be interested in this workshop."--BOOK JACKET.