Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 786
Book Description
Dissertation Abstracts International
Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 786
Book Description
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 786
Book Description
Notices of the American Mathematical Society
Author: American Mathematical Society
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 852
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 852
Book Description
Formal Geometry and Bordism Operations
Author: Eric Peterson
Publisher: Cambridge University Press
ISBN: 1108428037
Category : Mathematics
Languages : en
Pages : 421
Book Description
Delivers a broad, conceptual introduction to chromatic homotopy theory, focusing on contact with arithmetic and algebraic geometry.
Publisher: Cambridge University Press
ISBN: 1108428037
Category : Mathematics
Languages : en
Pages : 421
Book Description
Delivers a broad, conceptual introduction to chromatic homotopy theory, focusing on contact with arithmetic and algebraic geometry.
Singular Intersection Homology
Author: Greg Friedman
Publisher: Cambridge University Press
ISBN: 1107150744
Category : Mathematics
Languages : en
Pages : 823
Book Description
The first expository book-length introduction to intersection homology from the viewpoint of singular and piecewise linear chains.
Publisher: Cambridge University Press
ISBN: 1107150744
Category : Mathematics
Languages : en
Pages : 823
Book Description
The first expository book-length introduction to intersection homology from the viewpoint of singular and piecewise linear chains.
Novikov Conjectures, Index Theorems, and Rigidity: Volume 1
Author: Steven C. Ferry
Publisher: Cambridge University Press
ISBN: 0521497965
Category : Mathematics
Languages : en
Pages : 386
Book Description
These volumes are the outgrowth of a conference held at the Mathematisches Forschungsinstitut Oberwolfach (Germany) on the subject of 'Novikov Conjectures, Index Theorems and Rigidity'.
Publisher: Cambridge University Press
ISBN: 0521497965
Category : Mathematics
Languages : en
Pages : 386
Book Description
These volumes are the outgrowth of a conference held at the Mathematisches Forschungsinstitut Oberwolfach (Germany) on the subject of 'Novikov Conjectures, Index Theorems and Rigidity'.
The Local Structure of Algebraic K-Theory
Author: Bjørn Ian Dundas
Publisher: Springer Science & Business Media
ISBN: 1447143930
Category : Mathematics
Languages : en
Pages : 447
Book Description
Algebraic K-theory encodes important invariants for several mathematical disciplines, spanning from geometric topology and functional analysis to number theory and algebraic geometry. As is commonly encountered, this powerful mathematical object is very hard to calculate. Apart from Quillen's calculations of finite fields and Suslin's calculation of algebraically closed fields, few complete calculations were available before the discovery of homological invariants offered by motivic cohomology and topological cyclic homology. This book covers the connection between algebraic K-theory and Bökstedt, Hsiang and Madsen's topological cyclic homology and proves that the difference between the theories are ‘locally constant’. The usefulness of this theorem stems from being more accessible for calculations than K-theory, and hence a single calculation of K-theory can be used with homological calculations to obtain a host of ‘nearby’ calculations in K-theory. For instance, Quillen's calculation of the K-theory of finite fields gives rise to Hesselholt and Madsen's calculations for local fields, and Voevodsky's calculations for the integers give insight into the diffeomorphisms of manifolds. In addition to the proof of the full integral version of the local correspondence between K-theory and topological cyclic homology, the book provides an introduction to the necessary background in algebraic K-theory and highly structured homotopy theory; collecting all necessary tools into one common framework. It relies on simplicial techniques, and contains an appendix summarizing the methods widely used in the field. The book is intended for graduate students and scientists interested in algebraic K-theory, and presupposes a basic knowledge of algebraic topology.
Publisher: Springer Science & Business Media
ISBN: 1447143930
Category : Mathematics
Languages : en
Pages : 447
Book Description
Algebraic K-theory encodes important invariants for several mathematical disciplines, spanning from geometric topology and functional analysis to number theory and algebraic geometry. As is commonly encountered, this powerful mathematical object is very hard to calculate. Apart from Quillen's calculations of finite fields and Suslin's calculation of algebraically closed fields, few complete calculations were available before the discovery of homological invariants offered by motivic cohomology and topological cyclic homology. This book covers the connection between algebraic K-theory and Bökstedt, Hsiang and Madsen's topological cyclic homology and proves that the difference between the theories are ‘locally constant’. The usefulness of this theorem stems from being more accessible for calculations than K-theory, and hence a single calculation of K-theory can be used with homological calculations to obtain a host of ‘nearby’ calculations in K-theory. For instance, Quillen's calculation of the K-theory of finite fields gives rise to Hesselholt and Madsen's calculations for local fields, and Voevodsky's calculations for the integers give insight into the diffeomorphisms of manifolds. In addition to the proof of the full integral version of the local correspondence between K-theory and topological cyclic homology, the book provides an introduction to the necessary background in algebraic K-theory and highly structured homotopy theory; collecting all necessary tools into one common framework. It relies on simplicial techniques, and contains an appendix summarizing the methods widely used in the field. The book is intended for graduate students and scientists interested in algebraic K-theory, and presupposes a basic knowledge of algebraic topology.
Knot Theory and Its Applications
Author: Kunio Murasugi
Publisher: Springer Science & Business Media
ISBN: 0817647198
Category : Mathematics
Languages : en
Pages : 348
Book Description
This book introduces the study of knots, providing insights into recent applications in DNA research and graph theory. It sets forth fundamental facts such as knot diagrams, braid representations, Seifert surfaces, tangles, and Alexander polynomials. It also covers more recent developments and special topics, such as chord diagrams and covering spaces. The author avoids advanced mathematical terminology and intricate techniques in algebraic topology and group theory. Numerous diagrams and exercises help readers understand and apply the theory. Each chapter includes a supplement with interesting historical and mathematical comments.
Publisher: Springer Science & Business Media
ISBN: 0817647198
Category : Mathematics
Languages : en
Pages : 348
Book Description
This book introduces the study of knots, providing insights into recent applications in DNA research and graph theory. It sets forth fundamental facts such as knot diagrams, braid representations, Seifert surfaces, tangles, and Alexander polynomials. It also covers more recent developments and special topics, such as chord diagrams and covering spaces. The author avoids advanced mathematical terminology and intricate techniques in algebraic topology and group theory. Numerous diagrams and exercises help readers understand and apply the theory. Each chapter includes a supplement with interesting historical and mathematical comments.
Symplectic and Contact Topology: Interactions and Perspectives
Author: Y. Eliashberg
Publisher: American Mathematical Soc.
ISBN: 0821831623
Category : Mathematics
Languages : en
Pages : 210
Book Description
The papers presented in this volume are written by participants of the ``Symplectic and Contact Topology, Quantum Cohomology, and Symplectic Field Theory'' symposium. The workshop was part of a semester-long joint venture of The Fields Institute in Toronto and the Centre de Recherches Mathematiques in Montreal. The twelve papers cover the following topics: Symplectic Topology, the interaction between symplectic and other geometric structures, and Differential Geometry and Topology. The Proceeding concludes with two papers that have a more algebraic character. One is related to the program of Homological Mirror Symmetry: the author defines a category of extended complex manifolds and studies its properties. The subject of the final paper is Non-commutative Symplectic Geometry, in particular the structure of the symplectomorphism group of a non-commutative complex plane. The in-depth articles make this book a useful reference for graduate students as well as research mathematicians.
Publisher: American Mathematical Soc.
ISBN: 0821831623
Category : Mathematics
Languages : en
Pages : 210
Book Description
The papers presented in this volume are written by participants of the ``Symplectic and Contact Topology, Quantum Cohomology, and Symplectic Field Theory'' symposium. The workshop was part of a semester-long joint venture of The Fields Institute in Toronto and the Centre de Recherches Mathematiques in Montreal. The twelve papers cover the following topics: Symplectic Topology, the interaction between symplectic and other geometric structures, and Differential Geometry and Topology. The Proceeding concludes with two papers that have a more algebraic character. One is related to the program of Homological Mirror Symmetry: the author defines a category of extended complex manifolds and studies its properties. The subject of the final paper is Non-commutative Symplectic Geometry, in particular the structure of the symplectomorphism group of a non-commutative complex plane. The in-depth articles make this book a useful reference for graduate students as well as research mathematicians.
Motivic Homotopy Theory
Author: Bjorn Ian Dundas
Publisher: Springer Science & Business Media
ISBN: 3540458972
Category : Mathematics
Languages : en
Pages : 228
Book Description
This book is based on lectures given at a summer school on motivic homotopy theory at the Sophus Lie Centre in Nordfjordeid, Norway, in August 2002. Aimed at graduate students in algebraic topology and algebraic geometry, it contains background material from both of these fields, as well as the foundations of motivic homotopy theory. It will serve as a good introduction as well as a convenient reference for a broad group of mathematicians to this important and fascinating new subject. Vladimir Voevodsky is one of the founders of the theory and received the Fields medal for his work, and the other authors have all done important work in the subject.
Publisher: Springer Science & Business Media
ISBN: 3540458972
Category : Mathematics
Languages : en
Pages : 228
Book Description
This book is based on lectures given at a summer school on motivic homotopy theory at the Sophus Lie Centre in Nordfjordeid, Norway, in August 2002. Aimed at graduate students in algebraic topology and algebraic geometry, it contains background material from both of these fields, as well as the foundations of motivic homotopy theory. It will serve as a good introduction as well as a convenient reference for a broad group of mathematicians to this important and fascinating new subject. Vladimir Voevodsky is one of the founders of the theory and received the Fields medal for his work, and the other authors have all done important work in the subject.
Algebraic Topology
Author: Tammo tom Dieck
Publisher: European Mathematical Society
ISBN: 9783037190487
Category : Mathematics
Languages : en
Pages : 584
Book Description
This book is written as a textbook on algebraic topology. The first part covers the material for two introductory courses about homotopy and homology. The second part presents more advanced applications and concepts (duality, characteristic classes, homotopy groups of spheres, bordism). The author recommends starting an introductory course with homotopy theory. For this purpose, classical results are presented with new elementary proofs. Alternatively, one could start more traditionally with singular and axiomatic homology. Additional chapters are devoted to the geometry of manifolds, cell complexes and fibre bundles. A special feature is the rich supply of nearly 500 exercises and problems. Several sections include topics which have not appeared before in textbooks as well as simplified proofs for some important results. Prerequisites are standard point set topology (as recalled in the first chapter), elementary algebraic notions (modules, tensor product), and some terminology from category theory. The aim of the book is to introduce advanced undergraduate and graduate (master's) students to basic tools, concepts and results of algebraic topology. Sufficient background material from geometry and algebra is included.
Publisher: European Mathematical Society
ISBN: 9783037190487
Category : Mathematics
Languages : en
Pages : 584
Book Description
This book is written as a textbook on algebraic topology. The first part covers the material for two introductory courses about homotopy and homology. The second part presents more advanced applications and concepts (duality, characteristic classes, homotopy groups of spheres, bordism). The author recommends starting an introductory course with homotopy theory. For this purpose, classical results are presented with new elementary proofs. Alternatively, one could start more traditionally with singular and axiomatic homology. Additional chapters are devoted to the geometry of manifolds, cell complexes and fibre bundles. A special feature is the rich supply of nearly 500 exercises and problems. Several sections include topics which have not appeared before in textbooks as well as simplified proofs for some important results. Prerequisites are standard point set topology (as recalled in the first chapter), elementary algebraic notions (modules, tensor product), and some terminology from category theory. The aim of the book is to introduce advanced undergraduate and graduate (master's) students to basic tools, concepts and results of algebraic topology. Sufficient background material from geometry and algebra is included.