Biomedical Membranes And (Bio)artificial Organs PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Biomedical Membranes And (Bio)artificial Organs PDF full book. Access full book title Biomedical Membranes And (Bio)artificial Organs by Dimitrios Stamatialis. Download full books in PDF and EPUB format.

Biomedical Membranes And (Bio)artificial Organs

Biomedical Membranes And (Bio)artificial Organs PDF Author: Dimitrios Stamatialis
Publisher: World Scientific
ISBN: 9813223987
Category : Technology & Engineering
Languages : en
Pages : 346

Book Description
This book focusses on the development of biomedical membranes and their applications for (bio)artificial organs. It covers the state of art and main challenges for applying synthetic membranes in these organs. It also highlights the importance of accomplishing an integration of engineering with biology and medicine to understand and manage the scientific, industrial, clinical and ethical aspects of these organs.The compendium consists of 11 chapters, written by world renowned experts in the fields of membrane technology, biomaterials science and technology, cell biology, medicine and engineering. Every chapter describes the clinical needs and the materials, membranes, and concepts required for the successful development of the (bio)artificial organs.This text is suitable for undergraduate and graduate students in biomedical engineering, materials science and membrane science and technology, as well as, for professionals and researchers working in these fields.

Biomedical Membranes And (Bio)artificial Organs

Biomedical Membranes And (Bio)artificial Organs PDF Author: Dimitrios Stamatialis
Publisher: World Scientific
ISBN: 9813223987
Category : Technology & Engineering
Languages : en
Pages : 346

Book Description
This book focusses on the development of biomedical membranes and their applications for (bio)artificial organs. It covers the state of art and main challenges for applying synthetic membranes in these organs. It also highlights the importance of accomplishing an integration of engineering with biology and medicine to understand and manage the scientific, industrial, clinical and ethical aspects of these organs.The compendium consists of 11 chapters, written by world renowned experts in the fields of membrane technology, biomaterials science and technology, cell biology, medicine and engineering. Every chapter describes the clinical needs and the materials, membranes, and concepts required for the successful development of the (bio)artificial organs.This text is suitable for undergraduate and graduate students in biomedical engineering, materials science and membrane science and technology, as well as, for professionals and researchers working in these fields.

Membrane Systems

Membrane Systems PDF Author: Loredana De Bartolo
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110390884
Category : Medical
Languages : en
Pages : 302

Book Description
Membrane processes today play a signifi cant role in the replacement therapy for acute and chronic organ failure diseases. Current extracorporeal blood purifi cation and oxygenation devices employ membranes acting as selective barriers for the removal of endogeneous and exogeneous toxins and for gas exchange, respectively. Additionally, membrane technology offers new interesting opportunities for the design of bioartificial livers, pancreas, kidneys, lungs etc. This book reviews the latest developments in membrane systems for bioartificial organs and regenerative medicine, investigates how membrane technology can improve the quality and efficiency of biomedical devices, and highlights the design procedures for membrane materials covering the preparation, characterization, and sterilization steps as well as transport phenomena. The different strategies pursued for the development of membrane bioartifi cial organs, including crucial issues related to blood/cell-membrane interactions are described with the aim of opening new and exciting frontiers in the coming decades. The book is a valuable tool for tissue engineers, clinicians, biomaterials scientists, membranologists as well as biologists and biotechnologists. It is also a source of reference for students, academic and industrial researchers in the topic of biotechnology, biomedical engineering, materials science and medicine.

Current Trends and Future Developments on (Bio-) Membranes

Current Trends and Future Developments on (Bio-) Membranes PDF Author: Angelo Basile
Publisher: Elsevier
ISBN: 012814226X
Category : Technology & Engineering
Languages : en
Pages : 260

Book Description
Current Trends and Future Developments on (Bio-) Membranes: Membrane Applications in Artificial Organs and Tissue Engineering reports on membrane applications in the field of biomedical engineering, ranging from artificial organs, to tissue engineering. The book offers a comprehensive review of all the current scientific developments and various applications of membranes in this area. It is a key reference text for R&D managers in industry who are interested in the development of artificial and bioartificial organs, as well as academic researchers and postgraduate students working in the wider area of artificial organs and tissue engineering. - Describes numerous bioartificial organ configurations and their relationships to membranes - Includes new innovations and solutions in the development of artificial organs with membrane components - Describes various membrane fabrication techniques for tissue engineering

Biofabrication

Biofabrication PDF Author: Antonietta Messina
Publisher: Elsevier Inc. Chapters
ISBN: 0128090529
Category : Medical
Languages : en
Pages : 25

Book Description
In tissue engineering the formation of organized and functional tissues is a very complex task: the cellular environment requires suitable physiological conditions that, presently, can be achieved and maintained by using properly designed biomaterials that can support the viability and all specific functions of cells. The creation of the biomimetic environment can be realized by using polymeric membranes with specific physico-chemical, morphological, and transport properties on the basis of the targeted tissue or organ. Membrane can act as an instructive extracellular matrix (ECM) for cells, especially for stem cells or progenitor cells, whose differentiation is desired for their therapeutic potential and usefulness in the toxicological testing. Similar to the ECM, membrane exhibits from microscale to nanoscale of chemistry and topography and is able to provide physical, chemical, and mechanical signals to the cells, which are important for guiding their differentiation. In this chapter, the authors report on tailor-made membrane systems designed and operated according to well-defined engineering criteria and their potential use in the biofabrication of tissues and organs. Membrane surface and transport properties play a pivotal role in the proliferation and differentiation process governing mass transfer and providing instructive signals to the cells. Furthermore, membrane bioreactors, through the fluid dynamics modulation, may simulate the in vivo complex physiological environment, ensuring an adequate mass transfer of nutrients and metabolites and the molecular and mechanical regulatory signals.

Organ Manufacturing

Organ Manufacturing PDF Author: Xiaohong Wang
Publisher: Nova Science Publishers
ISBN: 9781634829571
Category : Artificial organs
Languages : en
Pages : 0

Book Description
This is the first time that human organs, such as the heart, liver, kidney, stomach, uterus, skin, lung, pancreas and breast can be manufactured automatically and precisely for clinical transplantation, drug screening and metabolism model establishment. Headed by Professor Xiaohong Wang (also the founder and director) in the Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, this group has focused on organ manufacturing for over ten years. A series of technical bottleneck problems, such as vascular and nerve system establishment in a construct, multiple cell types and material system incorporation, and stem cell sequential engagement, have been overcome one by one. Two technical approaches have been exploited extensively. One is multiple nozzle rapid prototyping (RP), additive manufacturing (AM), or three-dimension (3D) printing. The other is combined mold systems. More than 110 articles and 40 patents with a series of theories and practices have been published consequently. In the future, all the failed organs (including the brain) in the human body can be substituted easily like a small accessory part in a car. Everyone can get benefit from these techniques, which ultimately means that the lifespan of humans, therefore, can be greatly prolonged from this time point. This book examines the progress made in the field and the developments made by these researchers (and authors) in the field.

Medical Applications of Artificial Membranes, Immunoprotection of Cells, and Bioartificial Organs

Medical Applications of Artificial Membranes, Immunoprotection of Cells, and Bioartificial Organs PDF Author: International Centre for Biocybernetics
Publisher:
ISBN:
Category :
Languages : en
Pages : 93

Book Description


Basic Transport Phenomena in Biomedical Engineering

Basic Transport Phenomena in Biomedical Engineering PDF Author: Ronald L. Fournier
Publisher: CRC Press
ISBN: 1498768725
Category : Medical
Languages : en
Pages : 654

Book Description
This will be a substantial revision of a good selling text for upper division/first graduate courses in biomedical transport phenomena, offered in many departments of biomedical and chemical engineering. Each chapter will be updated accordingly, with new problems and examples incorporated where appropriate. A particular emphasis will be on new information related to tissue engineering and organ regeneration. A key new feature will be the inclusion of complete solutions within the body of the text, rather than in a separate solutions manual. Also, Matlab will be incorporated for the first time with this Fourth Edition.

Transport Phenomena in Biomedical Engineering: Artifical organ Design and Development, and Tissue Engineering

Transport Phenomena in Biomedical Engineering: Artifical organ Design and Development, and Tissue Engineering PDF Author: Kal Renganathan Sharma
Publisher: McGraw Hill Professional
ISBN: 0071663983
Category : Technology & Engineering
Languages : en
Pages : 510

Book Description
A Cutting-Edge Guide to Applying Transport Phenomena Principles to Bioengineering Systems Transport Phenomena in Biomedical Engineering: Artificial Order Design and Development and Tissue Engineering explains how to apply the equations of continuity, momentum, energy, and mass to human anatomical systems. This authoritative resource presents solutions along with term-by-term medical significance. Worked exercises illustrate the equations derived, and detailed case studies highlight real-world examples of artificial organ design and human tissue engineering. Coverage includes: Fundamentals of fluid mechanics and principles of molecular diffusion Osmotic pressure, solvent permeability, and solute transport Rheology of blood and transport Gas transport Pharmacokinetics Tissue design Bioartificial organ design and immunoisolation Bioheat transport 541 end-of-chapter exercises and review questions 106 illustrations 1,469 equations derived from first principles

Biomedical Engineering Challenges

Biomedical Engineering Challenges PDF Author: Vincenzo Piemonte
Publisher: John Wiley & Sons
ISBN: 1119296048
Category : Science
Languages : en
Pages : 273

Book Description
An important resource that puts the focus on the chemical engineering aspects of biomedical engineering In the past 50 years remarkable achievements have been advanced in the fields of biomedical and chemical engineering. With contributions from leading chemical engineers, Biomedical Engineering Challenges reviews the recent research and discovery that sits at the interface of engineering and biology. The authors explore the principles and practices that are applied to the ever-expanding array of such new areas as gene-therapy delivery, biosensor design, and the development of improved therapeutic compounds, imaging agents, and drug delivery vehicles. Filled with illustrative case studies, this important resource examines such important work as methods of growing human cells and tissues outside the body in order to repair or replace damaged tissues. In addition, the text covers a range of topics including the challenges faced with developing artificial lungs, kidneys, and livers; advances in 3D cell culture systems; and chemical reaction methodologies for biomedical imagining analysis. This vital resource: Covers interdisciplinary research at the interface between chemical engineering, biology, and chemistry Provides a series of valuable case studies describing current themes in biomedical engineering Explores chemical engineering principles such as mass transfer, bioreactor technologies as applied to problems such as cell culture, tissue engineering, and biomedical imaging Written from the point of view of chemical engineers, this authoritative guide offers a broad-ranging but concise overview of research at the interface of chemical engineering and biology.

Biomaterials for Artificial Organs

Biomaterials for Artificial Organs PDF Author: Michael Lysaght
Publisher: Elsevier
ISBN: 0857090844
Category : Technology & Engineering
Languages : en
Pages : 313

Book Description
The worldwide demand for organ transplants far exceeds available donor organs. Consequently some patients die whilst waiting for a transplant. Synthetic alternatives are therefore imperative to improve the quality of, and in some cases, save people's lives. Advances in biomaterials have generated a range of materials and devices for use either outside the body or through implantation to replace or assist functions which may have been lost through disease or injury. Biomaterials for artificial organs reviews the latest developments in biomaterials and investigates how they can be used to improve the quality and efficiency of artificial organs.Part one discusses commodity biomaterials including membranes for oxygenators and plasmafilters, titanium and cobalt chromium alloys for hips and knees, polymeric joint-bearing surfaces for total joint replacements, biomaterials for pacemakers, defibrillators and neurostimulators and mechanical and bioprosthetic heart valves. Part two goes on to investigate advanced and next generation biomaterials including small intestinal submucosa and other decullarized matrix biomaterials for tissue repair, new ceramics and composites for joint replacement surgery, biomaterials for improving the blood and tissue compatibility of total artificial hearts (TAH) and ventricular assist devices (VAD), nanostructured biomaterials for artificial tissues and organs and matrices for tissue engineering and regenerative medicine.With its distinguished editors and international team of contributors Biomaterials for artificial organs is an invaluable resource to researchers, scientists and academics concerned with the advancement of artificial organs. - Reviews the latest developments in biomaterials and investigates how they can be used to improve the quality and efficiency of artificial organs - Discusses commodity biomaterials including membranes for oxygenators and cobalt chromium alloys for hips and knees and polymeric joint-bearing surfaces for total joint replacements - Further biomaterials utilised in pacemakers, defibrillators, neurostimulators and mechanical and bioprosthetic heart valve are also explored