Biology and Biotechnology of the Plant Hormone Ethylene II PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Biology and Biotechnology of the Plant Hormone Ethylene II PDF full book. Access full book title Biology and Biotechnology of the Plant Hormone Ethylene II by A.K. Kanellis. Download full books in PDF and EPUB format.

Biology and Biotechnology of the Plant Hormone Ethylene II

Biology and Biotechnology of the Plant Hormone Ethylene II PDF Author: A.K. Kanellis
Publisher: Springer Science & Business Media
ISBN: 9401144532
Category : Science
Languages : en
Pages : 451

Book Description
The inflorescence of the monoecious maize plant is unique among the Gramineae in the sharp separation of the male and female structures. The male tassel at the terminus of the plant most often sheds pollen before the visual appearance of the receptive silks of th the female ear at a lateral bud, normally at the 10 leaf [I]. Earlier studies examined the ontogeny of the growing tissues beginning with the embryo in the kernel through to the obvious protuberances of the growing point as the kernel germinates. The differentiated developing soon-to-become tassel and the lateral bulges that develop into the ears on the lateral buds become apparent very early in the germinating kernel [2, 3, 46]. A certain number of cells are destined for tassel and ear development [8]. As the plant develops, there is a phase transition [\3, 16] from the vegetative lateral buds to the reproductive lateral buds. This change in phase has been ascribed to genotypic control as evidenced in the differences among different genotypes in the initiation of the reproductive [I]. The genetic control of tassel and ear initiation has been gleaned from anatomical observations. Lejeune and Bernier [I2] found that maize plants terminate the initiation of additional axillary meristems at the time of tassel initiation. This would indicate that the top-most ear shoot is initiated on the same day as the initiation of tassel development and this event signals the end of the undifferentiated growing point.

Biology and Biotechnology of the Plant Hormone Ethylene

Biology and Biotechnology of the Plant Hormone Ethylene PDF Author: A.K. Kanellis
Publisher: Springer Science & Business Media
ISBN: 9780792345879
Category : Science
Languages : en
Pages : 390

Book Description
Ethylene is a simple gaseous plant hormone produced by higher plants, bacteria and fungi. Thanks to new tools that have become available in biochemistry and molecular genetics, parts of the ethylene biosynthesis, perception and signal transduction reactions have been elucidated. This knowledge has been applied to enhance the quality of a number of agronomically important crops. In Biology and Biotechnology of the Plant Hormone Ethylene, leading figures in the field provide surveys of the current state of ethylene biosynthesis and action, perception and signal transduction pathways, senescence, biotechnological control, and the involvement of ethylene in pathogenesis and stress. Audience: Indispensable to all academic, industrial and agricultural researchers as well as undergraduates and graduates in plant biology, biochemistry, genetics, molecular biology and food science.

Biology and Biotechnology of the Plant Hormone Ethylene II

Biology and Biotechnology of the Plant Hormone Ethylene II PDF Author: A.K. Kanellis
Publisher: Springer Science & Business Media
ISBN: 9401144532
Category : Science
Languages : en
Pages : 451

Book Description
The inflorescence of the monoecious maize plant is unique among the Gramineae in the sharp separation of the male and female structures. The male tassel at the terminus of the plant most often sheds pollen before the visual appearance of the receptive silks of th the female ear at a lateral bud, normally at the 10 leaf [I]. Earlier studies examined the ontogeny of the growing tissues beginning with the embryo in the kernel through to the obvious protuberances of the growing point as the kernel germinates. The differentiated developing soon-to-become tassel and the lateral bulges that develop into the ears on the lateral buds become apparent very early in the germinating kernel [2, 3, 46]. A certain number of cells are destined for tassel and ear development [8]. As the plant develops, there is a phase transition [\3, 16] from the vegetative lateral buds to the reproductive lateral buds. This change in phase has been ascribed to genotypic control as evidenced in the differences among different genotypes in the initiation of the reproductive [I]. The genetic control of tassel and ear initiation has been gleaned from anatomical observations. Lejeune and Bernier [I2] found that maize plants terminate the initiation of additional axillary meristems at the time of tassel initiation. This would indicate that the top-most ear shoot is initiated on the same day as the initiation of tassel development and this event signals the end of the undifferentiated growing point.

Biology and Biotechnology of the Plant Hormone Ethylene

Biology and Biotechnology of the Plant Hormone Ethylene PDF Author: A.K. Kanellis
Publisher: Springer Science & Business Media
ISBN: 9401155461
Category : Science
Languages : en
Pages : 358

Book Description
Ethylene is a simple gaseous plant hormone produced by higher plants, bacteria and fungi. Thanks to new tools that have become available in biochemistry and molecular genetics, parts of the ethylene biosynthesis, perception and signal transduction reactions have been elucidated. This knowledge has been applied to enhance the quality of a number of agronomically important crops. In Biology and Biotechnology of the Plant Hormone Ethylene, leading figures in the field provide surveys of the current state of ethylene biosynthesis and action, perception and signal transduction pathways, senescence, biotechnological control, and the involvement of ethylene in pathogenesis and stress. Audience: Indispensable to all academic, industrial and agricultural researchers as well as undergraduates and graduates in plant biology, biochemistry, genetics, molecular biology and food science.

Ethylene in Plant Biology

Ethylene in Plant Biology PDF Author: Frederick B. Abeles
Publisher: Academic Press
ISBN: 0080916287
Category : Science
Languages : en
Pages : 431

Book Description
Ethylene in Plant Biology, Second Edition provides a definitive survey of what is currently known about this structurally simplest of all plant growth regulators. This volume contains all new material plus a bibliographic guide to the complete literature of this field. Progress in molecular biology and biotechnology as well as biochemistry, plant physiology, development, regulation, and environmental aspects is covered in nine chapters co-authored by three eminent authorities in plant ethylene research. This volume is the modern text reference for all researchers and students of ethylene in plant and agricultural science. - Completely updated - Concise, readable style for students and professional - Contains an extensive bibliographic guide to the original literature - Well illustrated with diagrams and photographs - Thorough coverage of: ethylene and ethephon roles and effects stress ethylene, biosynthesis of ethylene, molecular biology of ethylene, action of ethylene, agricultural uses of ethylene

The Plant Hormone Ethylene

The Plant Hormone Ethylene PDF Author: A. K. Mattoo
Publisher: CRC Press
ISBN: 1351092669
Category : Science
Languages : en
Pages : 722

Book Description
The breadth and depth of knowledge concerning ethylene synthesis and action, coupled with the rapid pace of new progress makes a survey of the field a daunting task. Therefore, experts who were actively engaged in different aspects of ethylene research from different countries, spanning four continents were enlisted to complete this monograph. This book discusses a historical perspective as well as future trends and possibilities in this field.

Biology and Biotechnology of the Plant Hormone Ethylene III

Biology and Biotechnology of the Plant Hormone Ethylene III PDF Author: Miguel Vendrell
Publisher: IOS Press
ISBN: 9781586033460
Category :
Languages : en
Pages : 566

Book Description


Biology and Biotechnology of the Plant Hormone Ethylene II

Biology and Biotechnology of the Plant Hormone Ethylene II PDF Author: A.K. Kanellis
Publisher: Springer Science & Business Media
ISBN: 9780792359418
Category : Nature
Languages : en
Pages : 486

Book Description
The inflorescence of the monoecious maize plant is unique among the Gramineae in the sharp separation of the male and female structures. The male tassel at the terminus of the plant most often sheds pollen before the visual appearance of the receptive silks of th the female ear at a lateral bud, normally at the 10 leaf [I]. Earlier studies examined the ontogeny of the growing tissues beginning with the embryo in the kernel through to the obvious protuberances of the growing point as the kernel germinates. The differentiated developing soon-to-become tassel and the lateral bulges that develop into the ears on the lateral buds become apparent very early in the germinating kernel [2, 3, 46]. A certain number of cells are destined for tassel and ear development [8]. As the plant develops, there is a phase transition [\3, 16] from the vegetative lateral buds to the reproductive lateral buds. This change in phase has been ascribed to genotypic control as evidenced in the differences among different genotypes in the initiation of the reproductive [I]. The genetic control of tassel and ear initiation has been gleaned from anatomical observations. Lejeune and Bernier [I2] found that maize plants terminate the initiation of additional axillary meristems at the time of tassel initiation. This would indicate that the top-most ear shoot is initiated on the same day as the initiation of tassel development and this event signals the end of the undifferentiated growing point.

Molecular Plant Abiotic Stress

Molecular Plant Abiotic Stress PDF Author: Aryadeep Roychoudhury
Publisher: John Wiley & Sons
ISBN: 111946367X
Category : Science
Languages : en
Pages : 649

Book Description
A close examination of current research on abiotic stresses in various plant species The unpredictable environmental stress conditions associated with climate change are significant challenges to global food security, crop productivity, and agricultural sustainability. Rapid population growth and diminishing resources necessitate the development of crops that can adapt to environmental extremities. Although significant advancements have been made in developing plants through improved crop breeding practices and genetic manipulation, further research is necessary to understand how genes and metabolites for stress tolerance are modulated, and how cross-talk and regulators can be tuned to achieve stress tolerance. Molecular Plant Abiotic Stress: Biology and Biotechnology is an extensive investigation of the various forms of abiotic stresses encountered in plants, and susceptibility or tolerance mechanisms found in different plant species. In-depth examination of morphological, anatomical, biochemical, molecular and gene expression levels enables plant scientists to identify the different pathways and signaling cascades involved in stress response. This timely book: Covers a wide range of abiotic stresses in multiple plant species Provides researchers and scientists with transgenic strategies to overcome stress tolerances in several plant species Compiles the most recent research and up-to-date data on stress tolerance Examines both selective breeding and genetic engineering approaches to improving plant stress tolerances Written and edited by prominent scientists and researchers from across the globe Molecular Plant Abiotic Stress: Biology and Biotechnology is a valuable source of information for students, academics, scientists, researchers, and industry professionals in fields including agriculture, botany, molecular biology, biochemistry and biotechnology, and plant physiology.

Plant Hormones

Plant Hormones PDF Author: Peter J. Davies
Publisher: Springer Science & Business Media
ISBN: 1402026862
Category : Science
Languages : en
Pages : 830

Book Description
Plant hormones play a crucial role in controlling the way in which plants grow and develop. While metabolism provides the power and building blocks for plant life, it is the hormones that regulate the speed of growth of the individual parts and integrate them to produce the form that we recognize as a plant. This book is a description of these natural chemicals: how they are synthesized and metabolized, how they act at both the organismal and molecular levels, how we measure them, a description of some of the roles they play in regulating plant growth and development, and the prospects for the genetic engineering of hormone levels or responses in crop plants. This is an updated revision of the third edition of the highly acclaimed text. Thirty-three chapters, including two totally new chapters plus four chapter updates, written by a group of fifty-five international experts, provide the latest information on Plant Hormones, particularly with reference to such new topics as signal transduction, brassinosteroids, responses to disease, and expansins. The book is not a conference proceedings but a selected collection of carefully integrated and illustrated reviews describing our knowledge of plant hormones and the experimental work that is the foundation of this information. The Revised 3rd Edition adds important information that has emerged since the original publication of the 3rd edition. This includes information on the receptors for auxin, gibberellin, abscisic acid and jasmonates, in addition to new chapters on strigolactones, the branching hormones, and florigen, the flowering hormone.

"One Rotten Apple Spoils the Whole Barrel": The Plant Hormone Ethylene, the Small Molecule and its Complexity

Author: Domenico De Martinis
Publisher: Frontiers Media SA
ISBN: 2889196232
Category : Botany
Languages : en
Pages : 134

Book Description
The gaseous molecule ethylene (C2H4), which is small in size and simple in structure, is a plant hormone most often associated with fruit ripening yet has a diversity of effects throughout the plant life cycle. While its agricultural effects were known even in ancient Egypt, the complexity of its mode of action and the broad spectrum of its effects and potential uses in plant physiology remain important scientific challenges today. In the last few decades, the biochemical pathway of ethylene production has been uncovered, ethylene perception and signaling have been molecularly dissected, ethylene-responsive transcription factors have been identified and numerous effects of ethylene have been described, ranging from water stress, development, senescence, reproduction plant-pathogen interactions, and of course, ripening. Thus ethylene is involved in plant development, in biotic and abiotic stress, and in reproduction. There is no stage in plant life that is not affected by ethylene, modulated by a complex and fascinating molecular machinery.