Author: Vijay Singh Meena
Publisher: Springer
ISBN: 9811084025
Category : Technology & Engineering
Languages : en
Pages : 401
Book Description
In any ecosystem, plant and microbe interaction is inevitable. They not only co-exist but also support each other’s survival and provide sustenance in stressful environments. Agro-ecosystems in many regions around the globe are affected by high temperatures, soil salinity/alkalinity, low pH and metal toxicity. High salinity and severe draught are other major constraints affecting agricultural practices and also plants in the wild. A major limiting factor affecting global agricultural productivity is environmental stresses. Apart from decreasing yield, they also have a devastating impact on plant growth. Plants battle with various kind of stresses with the help of symbiotic associations with the rhizospheric microbes. Naturally occuring plant-microbe interactions facilitate the survival of plants under these stressful conditions. The rhizosphere consists of several groups of microbes, plant growth-promoting bacteria (PGPB) is one such group of microbes that assists plants in coping with multiple stresses and also promote plant growth. These efficient microbes support the stress physiology of the plants and can be extremely useful in solving agricultural as well food- security problems. This book provides a detailed, holistic description of plant and microbe interaction. It elucidates various mechanisms of nutrient management, stress tolerance and enhanced crop productivity in the rhizosphere, discussing The rhizospheric flora and its importance in enhancement of plant growth, nutrient content, yield of various crops and vegetables as well as soil fertility and health. Divided into two volumes, the book addresses fundamentals, applications as well as research trends and new prospects for agricultural sustainability. Volume 1: Stress Management and Agricultural Sustainability, includes chapters offering a broad overview of plant stress management with the help of microbes. It also highlights the contribution of enzymatic and molecular events occurring in the rhizosphere due to plant microbe interactions, which in turn help in the biological control of plant disease and pest attacks. Various examples of plant microbe interaction in rhizospheric soil are elaborated to facilitate the development of efficient indigenous microbial consortia to enhance food and nutritional security. Providing a comprehensive information source on microbes and their role in agricultural and soil sustainability, this timely research book is of particular interest to students, academics and researchers working in the fields of microbiology, soil microbiology, biotechnology, agronomy, and the plant protection sciences, as well as for policy makers in the area of food security and sustainable agriculture.
Role of Rhizospheric Microbes in Soil
Author: Vijay Singh Meena
Publisher: Springer
ISBN: 9811084025
Category : Technology & Engineering
Languages : en
Pages : 401
Book Description
In any ecosystem, plant and microbe interaction is inevitable. They not only co-exist but also support each other’s survival and provide sustenance in stressful environments. Agro-ecosystems in many regions around the globe are affected by high temperatures, soil salinity/alkalinity, low pH and metal toxicity. High salinity and severe draught are other major constraints affecting agricultural practices and also plants in the wild. A major limiting factor affecting global agricultural productivity is environmental stresses. Apart from decreasing yield, they also have a devastating impact on plant growth. Plants battle with various kind of stresses with the help of symbiotic associations with the rhizospheric microbes. Naturally occuring plant-microbe interactions facilitate the survival of plants under these stressful conditions. The rhizosphere consists of several groups of microbes, plant growth-promoting bacteria (PGPB) is one such group of microbes that assists plants in coping with multiple stresses and also promote plant growth. These efficient microbes support the stress physiology of the plants and can be extremely useful in solving agricultural as well food- security problems. This book provides a detailed, holistic description of plant and microbe interaction. It elucidates various mechanisms of nutrient management, stress tolerance and enhanced crop productivity in the rhizosphere, discussing The rhizospheric flora and its importance in enhancement of plant growth, nutrient content, yield of various crops and vegetables as well as soil fertility and health. Divided into two volumes, the book addresses fundamentals, applications as well as research trends and new prospects for agricultural sustainability. Volume 1: Stress Management and Agricultural Sustainability, includes chapters offering a broad overview of plant stress management with the help of microbes. It also highlights the contribution of enzymatic and molecular events occurring in the rhizosphere due to plant microbe interactions, which in turn help in the biological control of plant disease and pest attacks. Various examples of plant microbe interaction in rhizospheric soil are elaborated to facilitate the development of efficient indigenous microbial consortia to enhance food and nutritional security. Providing a comprehensive information source on microbes and their role in agricultural and soil sustainability, this timely research book is of particular interest to students, academics and researchers working in the fields of microbiology, soil microbiology, biotechnology, agronomy, and the plant protection sciences, as well as for policy makers in the area of food security and sustainable agriculture.
Publisher: Springer
ISBN: 9811084025
Category : Technology & Engineering
Languages : en
Pages : 401
Book Description
In any ecosystem, plant and microbe interaction is inevitable. They not only co-exist but also support each other’s survival and provide sustenance in stressful environments. Agro-ecosystems in many regions around the globe are affected by high temperatures, soil salinity/alkalinity, low pH and metal toxicity. High salinity and severe draught are other major constraints affecting agricultural practices and also plants in the wild. A major limiting factor affecting global agricultural productivity is environmental stresses. Apart from decreasing yield, they also have a devastating impact on plant growth. Plants battle with various kind of stresses with the help of symbiotic associations with the rhizospheric microbes. Naturally occuring plant-microbe interactions facilitate the survival of plants under these stressful conditions. The rhizosphere consists of several groups of microbes, plant growth-promoting bacteria (PGPB) is one such group of microbes that assists plants in coping with multiple stresses and also promote plant growth. These efficient microbes support the stress physiology of the plants and can be extremely useful in solving agricultural as well food- security problems. This book provides a detailed, holistic description of plant and microbe interaction. It elucidates various mechanisms of nutrient management, stress tolerance and enhanced crop productivity in the rhizosphere, discussing The rhizospheric flora and its importance in enhancement of plant growth, nutrient content, yield of various crops and vegetables as well as soil fertility and health. Divided into two volumes, the book addresses fundamentals, applications as well as research trends and new prospects for agricultural sustainability. Volume 1: Stress Management and Agricultural Sustainability, includes chapters offering a broad overview of plant stress management with the help of microbes. It also highlights the contribution of enzymatic and molecular events occurring in the rhizosphere due to plant microbe interactions, which in turn help in the biological control of plant disease and pest attacks. Various examples of plant microbe interaction in rhizospheric soil are elaborated to facilitate the development of efficient indigenous microbial consortia to enhance food and nutritional security. Providing a comprehensive information source on microbes and their role in agricultural and soil sustainability, this timely research book is of particular interest to students, academics and researchers working in the fields of microbiology, soil microbiology, biotechnology, agronomy, and the plant protection sciences, as well as for policy makers in the area of food security and sustainable agriculture.
Bacilli in Agrobiotechnology
Author: M. Tofazzal Islam
Publisher: Springer Nature
ISBN: 3030854655
Category : Science
Languages : en
Pages : 614
Book Description
The third volume of the series ‘Bacilli and Agrobiotechnology’ is comprised of 25 chapters that bring a unique perspective to the readers about Bacillus-mediated biotic and abiotic plant stress tolerance, bioremediation and bioprospecting. These chapters are prepared by the leading scientists of global repute. The negative impacts of agrochemicals such as chemical fertilizers and pesticides on human health and environment are paramount. Bacillus and allied genera of beneficial plant-associated microbes are presenting beacon of hope to the farmers, plant scientists and stewards of environment. Several chapters of this volume focus on the induction of various signaling pathways in plants by Bacillus spp. to alleviate biotic and abiotic stresses impacted by global climate change Agricultural lands contaminated with heavy metals affect the ecological food chain starting from crop cultivation. How the toxic effects of trace metals originating from industrial effluents and agrochemicals can be remediated? This book addresses how to overcome these issues by applying elite strains of Bacillus. Bioprospecting is a systematic and organized search for conversion of bioresources to industrially important products by utilizing microbe-derived metabolites. This volume is enriched by including the bioprospecting aspects mediated by Bacillus spp. with novel insights.
Publisher: Springer Nature
ISBN: 3030854655
Category : Science
Languages : en
Pages : 614
Book Description
The third volume of the series ‘Bacilli and Agrobiotechnology’ is comprised of 25 chapters that bring a unique perspective to the readers about Bacillus-mediated biotic and abiotic plant stress tolerance, bioremediation and bioprospecting. These chapters are prepared by the leading scientists of global repute. The negative impacts of agrochemicals such as chemical fertilizers and pesticides on human health and environment are paramount. Bacillus and allied genera of beneficial plant-associated microbes are presenting beacon of hope to the farmers, plant scientists and stewards of environment. Several chapters of this volume focus on the induction of various signaling pathways in plants by Bacillus spp. to alleviate biotic and abiotic stresses impacted by global climate change Agricultural lands contaminated with heavy metals affect the ecological food chain starting from crop cultivation. How the toxic effects of trace metals originating from industrial effluents and agrochemicals can be remediated? This book addresses how to overcome these issues by applying elite strains of Bacillus. Bioprospecting is a systematic and organized search for conversion of bioresources to industrially important products by utilizing microbe-derived metabolites. This volume is enriched by including the bioprospecting aspects mediated by Bacillus spp. with novel insights.
Biological Control of Plant Pathogens
Author: K.F. Baker
Publisher:
ISBN:
Category :
Languages : en
Pages : 0
Book Description
Biological balance; What is biological control?; Biological control in plant pathology; Examples of biological control; Approaches to biological control with antagonistic microorganisms; Role of the pathogen in biological control; Role of the antagonist in biological control; Role of the host in biological control; Role of the physical environment in biological control; Biological control of pathogens of aerial parts; Whither biological control?; Why biological control?.
Publisher:
ISBN:
Category :
Languages : en
Pages : 0
Book Description
Biological balance; What is biological control?; Biological control in plant pathology; Examples of biological control; Approaches to biological control with antagonistic microorganisms; Role of the pathogen in biological control; Role of the antagonist in biological control; Role of the host in biological control; Role of the physical environment in biological control; Biological control of pathogens of aerial parts; Whither biological control?; Why biological control?.
Biological Control of Plant Diseases
Author: E.C. Tjamos
Publisher: Springer Science & Business Media
ISBN: 1475794681
Category : Science
Languages : en
Pages : 446
Book Description
The papers contained in this book were presented at a NATO Advanced Research Workshop (ARW) held at Cape Sounion, Athens, Greece, 19-24 May, 1991. The twenty-eight more comprehensive papers represent the key subjects of the ARW covered by invited speakers. The thirty-four short papers pre sented in a research format are contributions of those invited to participate in the ARW. There was a total of 70 participants from 21 countries. The objectives of the ARW were as follows: to review current knowledge of biological control of plant diseases and plant parasitic nematodes, with emphasis on mechanisms at the molecular, cellular, organismal, and ecosystem level; to examine and expand on current concepts and synthesize new concepts; to identify and prioritize limitations in the use of biological control for plant diseases and nematodes and the scientific research needed to overcome these limitations; and to develop strategies for biological control through management of resident agents or introduction of natural or modified agents.
Publisher: Springer Science & Business Media
ISBN: 1475794681
Category : Science
Languages : en
Pages : 446
Book Description
The papers contained in this book were presented at a NATO Advanced Research Workshop (ARW) held at Cape Sounion, Athens, Greece, 19-24 May, 1991. The twenty-eight more comprehensive papers represent the key subjects of the ARW covered by invited speakers. The thirty-four short papers pre sented in a research format are contributions of those invited to participate in the ARW. There was a total of 70 participants from 21 countries. The objectives of the ARW were as follows: to review current knowledge of biological control of plant diseases and plant parasitic nematodes, with emphasis on mechanisms at the molecular, cellular, organismal, and ecosystem level; to examine and expand on current concepts and synthesize new concepts; to identify and prioritize limitations in the use of biological control for plant diseases and nematodes and the scientific research needed to overcome these limitations; and to develop strategies for biological control through management of resident agents or introduction of natural or modified agents.
Biocontrol of Plant Diseases by Bacillus subtilis
Author: Makoto Shoda
Publisher: CRC Press
ISBN: 0429643101
Category : Medical
Languages : en
Pages : 351
Book Description
Plant diseases are a serious threat to food production. This unique volume provides the fundamental knowledge and practical use of B.subtilis as a promising biocontrol agent. In order to replace chemical pesticides, one possibility is microbial pesticides using safe microbes. Bacillus subtilis is one of several candidates. Screening of the bacterium, the application of plant tests, clarification of its suppressive mechanism to plant pathogens and engineering aspects of suppressive peptides production are presented here. The author illustrates how B. subtilis is far more advantageous than, for example, Pseudomonas in biocontrol and can be considered as an useful candidate. Features: Bacterium B. subtilis suppresses many plant pathogens and is a biocontrol agent to replace chemical pesticides The book presents the bacterium's suppressive mechanism to plant pathogens, and engineering aspects of suppressive peptides production Biological control of plant disease plays an important role in sustainable agricultural production practices and is expected to replace agricultural chemicals
Publisher: CRC Press
ISBN: 0429643101
Category : Medical
Languages : en
Pages : 351
Book Description
Plant diseases are a serious threat to food production. This unique volume provides the fundamental knowledge and practical use of B.subtilis as a promising biocontrol agent. In order to replace chemical pesticides, one possibility is microbial pesticides using safe microbes. Bacillus subtilis is one of several candidates. Screening of the bacterium, the application of plant tests, clarification of its suppressive mechanism to plant pathogens and engineering aspects of suppressive peptides production are presented here. The author illustrates how B. subtilis is far more advantageous than, for example, Pseudomonas in biocontrol and can be considered as an useful candidate. Features: Bacterium B. subtilis suppresses many plant pathogens and is a biocontrol agent to replace chemical pesticides The book presents the bacterium's suppressive mechanism to plant pathogens, and engineering aspects of suppressive peptides production Biological control of plant disease plays an important role in sustainable agricultural production practices and is expected to replace agricultural chemicals
Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol
Author: Md Tofazzal Islam
Publisher: Springer Nature
ISBN: 3030151751
Category : Science
Languages : en
Pages : 334
Book Description
The Gram-positive and spore-forming Bacilli are the most dominant group of bacteria that exist in various ecological niches on the earth. They represent one of the most important unmapped pools of biodiversity with immense potential of applications in agriculture, environment, and industry. As these bacteria are highly tolerant to stressful environment and enhance plant tolerance to harsh environment such as salinity, drought, and heavy metal toxicity, plant-associated Bacilli have high potential for promoting sustainable crop production. Many species of Bacilli are being commercially used as phytostimulator and biofertilizer. Some of them are applied as biopesticide for protecting crop plants from phytopathogens and insect pests. The Bacillus-based products are becoming popular in ecologically sound and climate resilient agricultural production system. In fact, Bacillus and allied species based formulations are already dominating the biopesticides market, although, to compete with other formulations and chemical alternatives, the biology of Bacillus had to be understood from perspective of such applications. Our understanding of the biology and molecular-basis of the beneficial effects of plant-associated Bacilli has greatly been progressed in recent years through genomics, metagenomics, post-genomics and metabolomics studies. The volume two of the series Bacilli and Agrobiotechnology comprehensively reviews and updates current knowledge of Bacilli as phytostimulant and biological control of plant pests. Better understanding the biology, ecology and mechanism of action of the beneficial strains of Bacilli will play a role in the development of products to support green biotechnology in agriculture and industries.
Publisher: Springer Nature
ISBN: 3030151751
Category : Science
Languages : en
Pages : 334
Book Description
The Gram-positive and spore-forming Bacilli are the most dominant group of bacteria that exist in various ecological niches on the earth. They represent one of the most important unmapped pools of biodiversity with immense potential of applications in agriculture, environment, and industry. As these bacteria are highly tolerant to stressful environment and enhance plant tolerance to harsh environment such as salinity, drought, and heavy metal toxicity, plant-associated Bacilli have high potential for promoting sustainable crop production. Many species of Bacilli are being commercially used as phytostimulator and biofertilizer. Some of them are applied as biopesticide for protecting crop plants from phytopathogens and insect pests. The Bacillus-based products are becoming popular in ecologically sound and climate resilient agricultural production system. In fact, Bacillus and allied species based formulations are already dominating the biopesticides market, although, to compete with other formulations and chemical alternatives, the biology of Bacillus had to be understood from perspective of such applications. Our understanding of the biology and molecular-basis of the beneficial effects of plant-associated Bacilli has greatly been progressed in recent years through genomics, metagenomics, post-genomics and metabolomics studies. The volume two of the series Bacilli and Agrobiotechnology comprehensively reviews and updates current knowledge of Bacilli as phytostimulant and biological control of plant pests. Better understanding the biology, ecology and mechanism of action of the beneficial strains of Bacilli will play a role in the development of products to support green biotechnology in agriculture and industries.
Potassium Solubilizing Microorganisms for Sustainable Agriculture
Author: Vijay Singh Meena
Publisher: Springer
ISBN: 813222776X
Category : Technology & Engineering
Languages : en
Pages : 338
Book Description
The potassium solubilizing microorganisms (KSMs) are a rhizospheric microorganism which solubilizes the insoluble potassium (K) to soluble forms of K for plant growth and yield. K-solubilization is carried out by a large number of saprophytic bacteria (Bacillus mucilaginosus, B. edaphicus, B. circulans, Acidothiobacillus ferrooxidans, Paenibacillus spp.) and fungal strains (Aspergillus spp. and Aspergillus terreus). Major amounts of K containing minerals (muscovite, orthoclase, biotite, feldspar, illite, mica) are present in the soil as a fixed form which is not directly taken up by the plant. Nowadays most of the farmers use injudicious application of chemical fertilizers for achieving maximum productivity. However, the KSMs are most important microorganisms for solubilizing fixed form of K in soil system. The KSMs are an indigenous rhizospheric microorganism which show effective interaction between soil-plant systems. The main mechanism of KSMs is acidolysis, chelation, exchange reactions, complexolysis and production of organic acid. According to the literature, currently negligible use of potassium fertilizer as chemical form has been recorded in agriculture for enhancing crop yield. Most of the farmers use only nitrogen and phosphorus and not the K fertilizer due to unawareness that the problem of K deficiency occurs in rhizospheric soils. The K fertilizer is also costly as compared to other chemical fertilizers.
Publisher: Springer
ISBN: 813222776X
Category : Technology & Engineering
Languages : en
Pages : 338
Book Description
The potassium solubilizing microorganisms (KSMs) are a rhizospheric microorganism which solubilizes the insoluble potassium (K) to soluble forms of K for plant growth and yield. K-solubilization is carried out by a large number of saprophytic bacteria (Bacillus mucilaginosus, B. edaphicus, B. circulans, Acidothiobacillus ferrooxidans, Paenibacillus spp.) and fungal strains (Aspergillus spp. and Aspergillus terreus). Major amounts of K containing minerals (muscovite, orthoclase, biotite, feldspar, illite, mica) are present in the soil as a fixed form which is not directly taken up by the plant. Nowadays most of the farmers use injudicious application of chemical fertilizers for achieving maximum productivity. However, the KSMs are most important microorganisms for solubilizing fixed form of K in soil system. The KSMs are an indigenous rhizospheric microorganism which show effective interaction between soil-plant systems. The main mechanism of KSMs is acidolysis, chelation, exchange reactions, complexolysis and production of organic acid. According to the literature, currently negligible use of potassium fertilizer as chemical form has been recorded in agriculture for enhancing crop yield. Most of the farmers use only nitrogen and phosphorus and not the K fertilizer due to unawareness that the problem of K deficiency occurs in rhizospheric soils. The K fertilizer is also costly as compared to other chemical fertilizers.
Postharvest Diseases of Fruits and Vegetables
Author: R. Barkai-Golan
Publisher: Elsevier
ISBN: 0080539297
Category : Technology & Engineering
Languages : en
Pages : 431
Book Description
Focusing on the great variety of research being done in the field of postharvest pathology, this volume presents a collection of topics concerning the diseases of harvested fruits and vegetables.Each chapter represents a separate unit which taken together create a better understanding of the whole subject. Topics include the causal agents of postharvest diseases of fruits and vegetables, their sources and their ways of penetration into the host; factors that may accelerate the development of the pathogen in the host - and those that suppress them; a list of the main pathogens of fruits and vegetables, their hosts and the diseases elicited by them; and a detailed description of the major diseases of selected groups of fruits and solanaceous vegetable fruits. Attack mechanisms of pathogens and defense mechanisms of the host are examined as are treatments aimed at suppressing postharvest diseases. The search for natural and safe chemical compounds and the variety of alternative physical and biological methods for use in postharvest disease control are emphasized.Teachers and students who focus on postharvest pathology, scientists in research institutes, companies dealing with fruit and vegetable preservation technologies and for all those striving to improve the quality of harvested fruits and vegetables will find this book of great interest.
Publisher: Elsevier
ISBN: 0080539297
Category : Technology & Engineering
Languages : en
Pages : 431
Book Description
Focusing on the great variety of research being done in the field of postharvest pathology, this volume presents a collection of topics concerning the diseases of harvested fruits and vegetables.Each chapter represents a separate unit which taken together create a better understanding of the whole subject. Topics include the causal agents of postharvest diseases of fruits and vegetables, their sources and their ways of penetration into the host; factors that may accelerate the development of the pathogen in the host - and those that suppress them; a list of the main pathogens of fruits and vegetables, their hosts and the diseases elicited by them; and a detailed description of the major diseases of selected groups of fruits and solanaceous vegetable fruits. Attack mechanisms of pathogens and defense mechanisms of the host are examined as are treatments aimed at suppressing postharvest diseases. The search for natural and safe chemical compounds and the variety of alternative physical and biological methods for use in postharvest disease control are emphasized.Teachers and students who focus on postharvest pathology, scientists in research institutes, companies dealing with fruit and vegetable preservation technologies and for all those striving to improve the quality of harvested fruits and vegetables will find this book of great interest.
Biocontrol Potential and its Exploitation in Sustainable Agriculture
Author: Rajeev K. Upadhyay
Publisher: Springer Science & Business Media
ISBN: 146154209X
Category : Science
Languages : en
Pages : 299
Book Description
Plant based biotechnology has come to represent a means of mitigating the problems of global food security in the twenty-first century. Products and processes in agriculture are increasingly becoming linked to science and cutting edge technology, to enable the engineering of what are in effect, designer plants. One of the most successful , non-chemical approaches to pest management and disease control is biological control, which seeks a solution in terms of using living organisms to regulate the incidence of pests and pathogens, providing a natural control' while still maintaining the biological balance with the ecosystem. This volume, (the first of two), addresses the different types of biocontrol for different pests, namely, crop diseases, weeds and nematodes, and details the biology of both the pest and its enemies, which is vital for efficient use of biological control. The book has numerous contributors who are authorities in their fields, and would be an asset to those who have interest in sustainable agriculture and crop productivity.
Publisher: Springer Science & Business Media
ISBN: 146154209X
Category : Science
Languages : en
Pages : 299
Book Description
Plant based biotechnology has come to represent a means of mitigating the problems of global food security in the twenty-first century. Products and processes in agriculture are increasingly becoming linked to science and cutting edge technology, to enable the engineering of what are in effect, designer plants. One of the most successful , non-chemical approaches to pest management and disease control is biological control, which seeks a solution in terms of using living organisms to regulate the incidence of pests and pathogens, providing a natural control' while still maintaining the biological balance with the ecosystem. This volume, (the first of two), addresses the different types of biocontrol for different pests, namely, crop diseases, weeds and nematodes, and details the biology of both the pest and its enemies, which is vital for efficient use of biological control. The book has numerous contributors who are authorities in their fields, and would be an asset to those who have interest in sustainable agriculture and crop productivity.
Bioformulations: for Sustainable Agriculture
Author: Naveen Kumar Arora
Publisher: Springer
ISBN: 8132227794
Category : Technology & Engineering
Languages : en
Pages : 299
Book Description
More than a century has passed since the first bioformulations were introduced to the market. But there is still much to be done, explored and developed. Though bioformulations offer green alternatives and are important for sustainable agriculture, they make up only a small fraction of the total additions used to enhance crop yields or protect them from pests. There is a great need to develop bioformulations that can promote confidence among end users; accordingly, it is imperative that bioformulations to replace chemicals be reliable and overcome the shortcomings of the past. Bioformulations: for Sustainable Agriculture discusses all the issues related to the current limitations and future development of bioformulations. It examines in detail those bioformulations that include biofertilizers and biopesticides (also commonly known as bioinoculants), presenting a global picture of their development. Further chapters address diverse microbes that are already being or could be used as bioformulations. The book also discusses the techniques, tools and other additions required to establish bioformulations as trustworthy and global solutions. It assesses the types of bioformulations currently available on the market, while also considering the future roles of bioformulations, including the reclamation of marginal and polluted soils. Further, it discusses the current legislation and much-needed amendments. Overall the book provides a comprehensive outlook on the status quo of bioformulations and the future approaches needed to improve them and achieve sustainable agriculture and food security without sacrificing the quality of soils. This will be extremely important in offering chemical-free foods and a better future for generations to come.
Publisher: Springer
ISBN: 8132227794
Category : Technology & Engineering
Languages : en
Pages : 299
Book Description
More than a century has passed since the first bioformulations were introduced to the market. But there is still much to be done, explored and developed. Though bioformulations offer green alternatives and are important for sustainable agriculture, they make up only a small fraction of the total additions used to enhance crop yields or protect them from pests. There is a great need to develop bioformulations that can promote confidence among end users; accordingly, it is imperative that bioformulations to replace chemicals be reliable and overcome the shortcomings of the past. Bioformulations: for Sustainable Agriculture discusses all the issues related to the current limitations and future development of bioformulations. It examines in detail those bioformulations that include biofertilizers and biopesticides (also commonly known as bioinoculants), presenting a global picture of their development. Further chapters address diverse microbes that are already being or could be used as bioformulations. The book also discusses the techniques, tools and other additions required to establish bioformulations as trustworthy and global solutions. It assesses the types of bioformulations currently available on the market, while also considering the future roles of bioformulations, including the reclamation of marginal and polluted soils. Further, it discusses the current legislation and much-needed amendments. Overall the book provides a comprehensive outlook on the status quo of bioformulations and the future approaches needed to improve them and achieve sustainable agriculture and food security without sacrificing the quality of soils. This will be extremely important in offering chemical-free foods and a better future for generations to come.