Binaural Responses Underlay the Function of Primary Auditory Cortex PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Binaural Responses Underlay the Function of Primary Auditory Cortex PDF full book. Access full book title Binaural Responses Underlay the Function of Primary Auditory Cortex by Kyle Tokuichi Nakamoto. Download full books in PDF and EPUB format.

Binaural Responses Underlay the Function of Primary Auditory Cortex

Binaural Responses Underlay the Function of Primary Auditory Cortex PDF Author: Kyle Tokuichi Nakamoto
Publisher:
ISBN:
Category : Auditory perception
Languages : en
Pages : 466

Book Description


Binaural Responses Underlay the Function of Primary Auditory Cortex

Binaural Responses Underlay the Function of Primary Auditory Cortex PDF Author: Kyle Tokuichi Nakamoto
Publisher:
ISBN:
Category : Auditory perception
Languages : en
Pages : 466

Book Description


A Study of Responses Evoked in the Auditory Cortex of the Cat by Binaural Tonal Stimuli

A Study of Responses Evoked in the Auditory Cortex of the Cat by Binaural Tonal Stimuli PDF Author: Judith Elaine Hirsch
Publisher:
ISBN:
Category : Acoustic nerve
Languages : en
Pages : 200

Book Description


Functional Organization of Binaural and Temporal Processing in Primary Auditory Cortex of the Awake Monkey

Functional Organization of Binaural and Temporal Processing in Primary Auditory Cortex of the Awake Monkey PDF Author: David Henry Reser
Publisher:
ISBN:
Category :
Languages : en
Pages : 542

Book Description


Coding of Sound Motion in the Rat Auditory Cortex

Coding of Sound Motion in the Rat Auditory Cortex PDF Author: Daryl Ebling Doan
Publisher:
ISBN:
Category :
Languages : en
Pages : 182

Book Description


Binaural Hearing

Binaural Hearing PDF Author: Ruth Y. Litovsky
Publisher: Springer Nature
ISBN: 3030571009
Category : Medical
Languages : en
Pages : 425

Book Description
The field of Binaural Hearing involves studies of auditory perception, physiology, and modeling, including normal and abnormal aspects of the system. Binaural processes involved in both sound localization and speech unmasking have gained a broader interest and have received growing attention in the published literature. The field has undergone some significant changes. There is now a much richer understanding of the many aspects that comprising binaural processing, its role in development, and in success and limitations of hearing-aid and cochlear-implant users. The goal of this volume is to provide an up-to-date reference on the developments and novel ideas in the field of binaural hearing. The primary readership for the volume is expected to be academic specialists in the diverse fields that connect with psychoacoustics, neuroscience, engineering, psychology, audiology, and cochlear implants. This volume will serve as an important resource by way of introduction to the field, in particular for graduate students, postdoctoral scholars, the faculty who train them and clinicians.

Auditory Evoked Responses Elicited by Binaural and Monaural Pure Tone Stimuli

Auditory Evoked Responses Elicited by Binaural and Monaural Pure Tone Stimuli PDF Author: Jacqueline Robyn Dzau
Publisher:
ISBN:
Category :
Languages : en
Pages : 96

Book Description


Plasticity of the Auditory System

Plasticity of the Auditory System PDF Author: Thomas N. Parks
Publisher: Springer Science & Business Media
ISBN: 1475742193
Category : Science
Languages : en
Pages : 336

Book Description
The auditory system has a remarkable ability to adjust to an ever-changing environment. The six review chapters that comprise Plasticity of the Central Auditory System cover a spectrum of issues concerning this ability to adapt, defined by the widely applicable term "plasticity". With chapters focusing on the development of the cochlear nucleus, the mammalian superior olivary complex, plasticity in binaural hearing, plasticity in the auditory cortex, neural plasticity in bird songs, and plasticity in the insect auditory system, this volume represents much of the most current research in this field. The volume is thorough enough to stand alone, but is closely related a previous SHAR volume, Development of the Auditory System (Volume 9) by Rubel, Popper, and Fay. The book fully addresses the difficulties, challenges, and complexities of this topic as it applies to the auditory development of a wide variety of species.

Binaural and Spatial Hearing in Real and Virtual Environments

Binaural and Spatial Hearing in Real and Virtual Environments PDF Author: Robert Gilkey
Publisher: Psychology Press
ISBN: 1317780256
Category : Language Arts & Disciplines
Languages : en
Pages : 1109

Book Description
The current popular and scientific interest in virtual environments has provided a new impetus for investigating binaural and spatial hearing. However, the many intriguing phenomena of spatial hearing have long made it an exciting area of scientific inquiry. Psychophysical and physiological investigations of spatial hearing seem to be converging on common explanations of underlying mechanisms. These understandings have in turn been incorporated into sophisticated yet mathematically tractable models of binaural interaction. Thus, binaural and spatial hearing is one of the few areas in which professionals are soon likely to find adequate physiological explanations of complex psychological phenomena that can be reasonably and usefully approximated by mathematical and physical models. This volume grew out of the Conference on Binaural and Spatial Hearing, a four-day event held at Wright-Patterson Air Force Base in response to rapid developments in binaural and spatial hearing research and technology. Meant to be more than just a proceedings, it presents chapters that are longer than typical proceedings papers and contain considerably more review material, including extensive bibliographies in many cases. Arranged into topical sections, the chapters represent major thrusts in the recent literature. The authors of the first chapter in each section have been encouraged to take a broad perspective and review the current state of literature. Subsequent chapters in each section tend to be somewhat more narrowly focused, and often emphasize the authors' own work. Thus, each section provides overview, background, and current research on a particular topic. This book is significant in that it reviews the important work during the past 10 to 15 years, and provides greater breadth and depth than most of the previous works.

The Technology of Binaural Understanding

The Technology of Binaural Understanding PDF Author: Jens Blauert
Publisher: Springer Nature
ISBN: 3030003868
Category : Science
Languages : en
Pages : 815

Book Description
Sound, devoid of meaning, would not matter to us. It is the information sound conveys that helps the brain to understand its environment. Sound and its underlying meaning are always associated with time and space. There is no sound without spatial properties, and the brain always organizes this information within a temporal–spatial framework. This book is devoted to understanding the importance of meaning for spatial and related further aspects of hearing, including cross-modal inference. People, when exposed to acoustic stimuli, do not react directly to what they hear but rather to what they hear means to them. This semiotic maxim may not always apply, for instance, when the reactions are reflexive. But, where it does apply, it poses a major challenge to the builders of models of the auditory system. Take, for example, an auditory model that is meant to be implemented on a robotic agent for autonomous search-&-rescue actions. Or think of a system that can perform judgments on the sound quality of multimedia-reproduction systems. It becomes immediately clear that such a system needs • Cognitive capabilities, including substantial inherent knowledge • The ability to integrate information across different sensory modalities To realize these functions, the auditory system provides a pair of sensory organs, the two ears, and the means to perform adequate preprocessing of the signals provided by the ears. This is realized in the subcortical parts of the auditory system. In the title of a prior book, the term Binaural Listening is used to indicate a focus on sub-cortical functions. Psychoacoustics and auditory signal processing contribute substantially to this area. The preprocessed signals are then forwarded to the cortical parts of the auditory system where, among other things, recognition, classification, localization, scene analysis, assignment of meaning, quality assessment, and action planning take place. Also, information from different sensory modalities is integrated at this level. Between sub-cortical and cortical regions of the auditory system, numerous feedback loops exist that ultimately support the high complexity and plasticity of the auditory system. The current book concentrates on these cognitive functions. Instead of processing signals, processing symbols is now the predominant modeling task. Substantial contributions to the field draw upon the knowledge acquired by cognitive psychology. The keyword Binaural Understanding in the book title characterizes this shift. Both books, The Technology of Binaural Listening and the current one, have been stimulated and supported by AABBA, an open research group devoted to the development and application of models of binaural hearing. The current book is dedicated to technologies that help explain, facilitate, apply, and support various aspects of binaural understanding. It is organized into five parts, each containing three to six chapters in order to provide a comprehensive overview of this emerging area. Each chapter was thoroughly reviewed by at least two anonymous, external experts. The first part deals with the psychophysical and physiological effects of Forming and Interpreting Aural Objects as well as the underlying models. The fundamental concepts of reflexive and reflective auditory feedback are introduced. Mechanisms of binaural attention and attention switching are covered—as well as how auditory Gestalt rules facilitate binaural understanding. A general blackboard architecture is introduced as an example of how machines can learn to form and interpret aural objects to simulate human cognitive listening. The second part, Configuring and Understanding Aural Space, focuses on the human understanding of complex three-dimensional environments—covering the psychological and biological fundamentals of auditory space formation. This part further addresses the human mechanisms used to process information and interact in complex reverberant environments, such as concert halls and forests, and additionally examines how the auditory system can learn to understand and adapt to these environments. The third part is dedicated to Processing Cross-Modal Inference and highlights the fundamental human mechanisms used to integrate auditory cues with cues from other modalities to localize and form perceptual objects. This part also provides a general framework for understanding how complex multimodal scenes can be simulated and rendered. The fourth part, Evaluating Aural-scene Quality and Speech Understanding, focuses on the object-forming aspects of binaural listening and understanding. It addresses cognitive mechanisms involved in both the understanding of speech and the processing of nonverbal information such as Sound Quality and Quality-of- Experience. The aesthetic judgment of rooms is also discussed in this context. Models that simulate underlying human processes and performance are covered in addition to techniques for rendering virtual environments that can then be used to test these models. The fifth part deals with the Application of Cognitive Mechanisms to Audio Technology. It highlights how cognitive mechanisms can be utilized to create spatial auditory illusions using binaural and other 3D-audio technologies. Further, it covers how cognitive binaural technologies can be applied to improve human performance in auditory displays and to develop new auditory technologies for interactive robots. The book concludes with the application of cognitive binaural technologies to the next generation of hearing aids.

Plasticity in auditory cortex on the grounds of learning discrimination

Plasticity in auditory cortex on the grounds of learning discrimination PDF Author: Hans Menning
Publisher: GRIN Verlag
ISBN: 3638340554
Category : Psychology
Languages : en
Pages : 128

Book Description
Doctoral Thesis / Dissertation from the year 2002 in the subject Psychology - Biological Psychology, grade: magna cum laude, University of Münster (Institute for Experimental Audiology), language: English, abstract: The motivation for this thesis came from the intriguing idea that we continuously restructure our brain through everyday learning. How can this highly complex, highly adaptive “learning device” change and reorganize itself all the time while keeping the illusion that we are constantly “ourselves”? The question is, whether learning has the power to trigger functional and structural changes in the brain. Several levels of thinking are involved in an interdisciplinary way. Thus, on a psychological level, 3 major topics enter this work: learning, memory and preconscious or pre-attentive perception and processing of information. Pre-attentive perception means that the subjects' attention and awareness is not mirrored in the neuronal response at a great deal. Learning is involved in this study as an improving discrimination of fine frequency and word duration differences; the latter was examined in a group of native and non-native speakers. Memory is referred to as sensory memory, a short-time memory trace that is established through the repetition of the same “standard” stimulus. In the auditory modality this has been termed “echoic memory”. A long, repetitive training engraves deep “traces” into the memory. The lifelong training of one’s native language results in a very fast and highly automated long-term memory access. On a neurophysiological level the main topics are plasticity and the reorganization of the underlying representational brain areas. Plastic changes on a molecular, synaptic and neuronal level and reorganization of cortical “maps” have been demonstrated abundantly in animal studies. On a physical level the measured magnetic fields and the calculation of the source parameters of their underlying neural generators are discussed in the light of the neurophysiological and psychological phenomena. Therefore, the aim of this dissertation thesis was, to transfer the insights of animal plasticity research onto the human brain and to draw a connection line between discrimination learning and the underlying neurophysiological changes. In a second step, these effects of discrimination learning are tested on speech perception.