Big Data Analytics for the Prediction of Tourist Preferences Worldwide PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Big Data Analytics for the Prediction of Tourist Preferences Worldwide PDF full book. Access full book title Big Data Analytics for the Prediction of Tourist Preferences Worldwide by N. Padmaja. Download full books in PDF and EPUB format.

Big Data Analytics for the Prediction of Tourist Preferences Worldwide

Big Data Analytics for the Prediction of Tourist Preferences Worldwide PDF Author: N. Padmaja
Publisher: Emerald Group Publishing
ISBN: 1835493408
Category : Business & Economics
Languages : en
Pages : 116

Book Description
Big Data Analytics for the Prediction of Tourist Preferences Worldwide explores the benefits, importance and demonstrates how Big Data can be applied in predicting tourist preferences and delivering tourism services in a customer friendly manner.

Big Data in Practice

Big Data in Practice PDF Author: Bernard Marr
Publisher: John Wiley & Sons
ISBN: 1119231396
Category : Business & Economics
Languages : en
Pages : 320

Book Description
The best-selling author of Big Data is back, this time with a unique and in-depth insight into how specific companies use big data. Big data is on the tip of everyone's tongue. Everyone understands its power and importance, but many fail to grasp the actionable steps and resources required to utilise it effectively. This book fills the knowledge gap by showing how major companies are using big data every day, from an up-close, on-the-ground perspective. From technology, media and retail, to sport teams, government agencies and financial institutions, learn the actual strategies and processes being used to learn about customers, improve manufacturing, spur innovation, improve safety and so much more. Organised for easy dip-in navigation, each chapter follows the same structure to give you the information you need quickly. For each company profiled, learn what data was used, what problem it solved and the processes put it place to make it practical, as well as the technical details, challenges and lessons learned from each unique scenario. Learn how predictive analytics helps Amazon, Target, John Deere and Apple understand their customers Discover how big data is behind the success of Walmart, LinkedIn, Microsoft and more Learn how big data is changing medicine, law enforcement, hospitality, fashion, science and banking Develop your own big data strategy by accessing additional reading materials at the end of each chapter

New Horizons for a Data-Driven Economy

New Horizons for a Data-Driven Economy PDF Author: José María Cavanillas
Publisher: Springer
ISBN: 3319215698
Category : Computers
Languages : en
Pages : 312

Book Description
In this book readers will find technological discussions on the existing and emerging technologies across the different stages of the big data value chain. They will learn about legal aspects of big data, the social impact, and about education needs and requirements. And they will discover the business perspective and how big data technology can be exploited to deliver value within different sectors of the economy. The book is structured in four parts: Part I “The Big Data Opportunity” explores the value potential of big data with a particular focus on the European context. It also describes the legal, business and social dimensions that need to be addressed, and briefly introduces the European Commission’s BIG project. Part II “The Big Data Value Chain” details the complete big data lifecycle from a technical point of view, ranging from data acquisition, analysis, curation and storage, to data usage and exploitation. Next, Part III “Usage and Exploitation of Big Data” illustrates the value creation possibilities of big data applications in various sectors, including industry, healthcare, finance, energy, media and public services. Finally, Part IV “A Roadmap for Big Data Research” identifies and prioritizes the cross-sectorial requirements for big data research, and outlines the most urgent and challenging technological, economic, political and societal issues for big data in Europe. This compendium summarizes more than two years of work performed by a leading group of major European research centers and industries in the context of the BIG project. It brings together research findings, forecasts and estimates related to this challenging technological context that is becoming the major axis of the new digitally transformed business environment.

Big Data Analytics for the Prediction of Tourist Preferences Worldwide

Big Data Analytics for the Prediction of Tourist Preferences Worldwide PDF Author: N. Padmaja
Publisher: Emerald Group Publishing
ISBN: 1835493408
Category : Business & Economics
Languages : en
Pages : 116

Book Description
Big Data Analytics for the Prediction of Tourist Preferences Worldwide explores the benefits, importance and demonstrates how Big Data can be applied in predicting tourist preferences and delivering tourism services in a customer friendly manner.

Big Data

Big Data PDF Author:
Publisher:
ISBN:
Category : Competition, International
Languages : en
Pages : 156

Book Description


The Elements of Big Data Value

The Elements of Big Data Value PDF Author: Edward Curry
Publisher: Springer Nature
ISBN: 3030681769
Category : Computers
Languages : en
Pages : 399

Book Description
This open access book presents the foundations of the Big Data research and innovation ecosystem and the associated enablers that facilitate delivering value from data for business and society. It provides insights into the key elements for research and innovation, technical architectures, business models, skills, and best practices to support the creation of data-driven solutions and organizations. The book is a compilation of selected high-quality chapters covering best practices, technologies, experiences, and practical recommendations on research and innovation for big data. The contributions are grouped into four parts: · Part I: Ecosystem Elements of Big Data Value focuses on establishing the big data value ecosystem using a holistic approach to make it attractive and valuable to all stakeholders. · Part II: Research and Innovation Elements of Big Data Value details the key technical and capability challenges to be addressed for delivering big data value. · Part III: Business, Policy, and Societal Elements of Big Data Value investigates the need to make more efficient use of big data and understanding that data is an asset that has significant potential for the economy and society. · Part IV: Emerging Elements of Big Data Value explores the critical elements to maximizing the future potential of big data value. Overall, readers are provided with insights which can support them in creating data-driven solutions, organizations, and productive data ecosystems. The material represents the results of a collective effort undertaken by the European data community as part of the Big Data Value Public-Private Partnership (PPP) between the European Commission and the Big Data Value Association (BDVA) to boost data-driven digital transformation.

Big Data for Twenty-First-Century Economic Statistics

Big Data for Twenty-First-Century Economic Statistics PDF Author: Katharine G. Abraham
Publisher: University of Chicago Press
ISBN: 022680125X
Category : Business & Economics
Languages : en
Pages : 502

Book Description
Introduction.Big data for twenty-first-century economic statistics: the future is now /Katharine G. Abraham, Ron S. Jarmin, Brian C. Moyer, and Matthew D. Shapiro --Toward comprehensive use of big data in economic statistics.Reengineering key national economic indicators /Gabriel Ehrlich, John Haltiwanger, Ron S. Jarmin, David Johnson, and Matthew D. Shapiro ;Big data in the US consumer price index: experiences and plans /Crystal G. Konny, Brendan K. Williams, and David M. Friedman ;Improving retail trade data products using alternative data sources /Rebecca J. Hutchinson ;From transaction data to economic statistics: constructing real-time, high-frequency, geographic measures of consumer spending /Aditya Aladangady, Shifrah Aron-Dine, Wendy Dunn, Laura Feiveson, Paul Lengermann, and Claudia Sahm ;Improving the accuracy of economic measurement with multiple data sources: the case of payroll employment data /Tomaz Cajner, Leland D. Crane, Ryan A. Decker, Adrian Hamins-Puertolas, and Christopher Kurz --Uses of big data for classification.Transforming naturally occurring text data into economic statistics: the case of online job vacancy postings /Arthur Turrell, Bradley Speigner, Jyldyz Djumalieva, David Copple, and James Thurgood ;Automating response evaluation for franchising questions on the 2017 economic census /Joseph Staudt, Yifang Wei, Lisa Singh, Shawn Klimek, J. Bradford Jensen, and Andrew Baer ;Using public data to generate industrial classification codes /John Cuffe, Sudip Bhattacharjee, Ugochukwu Etudo, Justin C. Smith, Nevada Basdeo, Nathaniel Burbank, and Shawn R. Roberts --Uses of big data for sectoral measurement.Nowcasting the local economy: using Yelp data to measure economic activity /Edward L. Glaeser, Hyunjin Kim, and Michael Luca ;Unit values for import and export price indexes: a proof of concept /Don A. Fast and Susan E. Fleck ;Quantifying productivity growth in the delivery of important episodes of care within the Medicare program using insurance claims and administrative data /John A. Romley, Abe Dunn, Dana Goldman, and Neeraj Sood ;Valuing housing services in the era of big data: a user cost approach leveraging Zillow microdata /Marina Gindelsky, Jeremy G. Moulton, and Scott A. Wentland --Methodological challenges and advances.Off to the races: a comparison of machine learning and alternative data for predicting economic indicators /Jeffrey C. Chen, Abe Dunn, Kyle Hood, Alexander Driessen, and Andrea Batch ;A machine learning analysis of seasonal and cyclical sales in weekly scanner data /Rishab Guha and Serena Ng ;Estimating the benefits of new products /W. Erwin Diewert and Robert C. Feenstra.

Big Data

Big Data PDF Author: Viktor Mayer-Schönberger
Publisher: Houghton Mifflin Harcourt
ISBN: 0544002695
Category : Business & Economics
Languages : en
Pages : 257

Book Description
A exploration of the latest trend in technology and the impact it will have on the economy, science, and society at large.

Applications of Big Data in Large- and Small-Scale Systems

Applications of Big Data in Large- and Small-Scale Systems PDF Author: Goundar, Sam
Publisher: IGI Global
ISBN: 1799866750
Category : Computers
Languages : en
Pages : 377

Book Description
With new technologies, such as computer vision, internet of things, mobile computing, e-governance and e-commerce, and wide applications of social media, organizations generate a huge volume of data and at a much faster rate than several years ago. Big data in large-/small-scale systems, characterized by high volume, diversity, and velocity, increasingly drives decision making and is changing the landscape of business intelligence. From governments to private organizations, from communities to individuals, all areas are being affected by this shift. There is a high demand for big data analytics that offer insights for computing efficiency, knowledge discovery, problem solving, and event prediction. To handle this demand and this increase in big data, there needs to be research on innovative and optimized machine learning algorithms in both large- and small-scale systems. Applications of Big Data in Large- and Small-Scale Systems includes state-of-the-art research findings on the latest development, up-to-date issues, and challenges in the field of big data and presents the latest innovative and intelligent applications related to big data. This book encompasses big data in various multidisciplinary fields from the medical field to agriculture, business research, and smart cities. While highlighting topics including machine learning, cloud computing, data visualization, and more, this book is a valuable reference tool for computer scientists, data scientists and analysts, engineers, practitioners, stakeholders, researchers, academicians, and students interested in the versatile and innovative use of big data in both large-scale and small-scale systems.

Terminal Services for Microsoft Windows Server 2003

Terminal Services for Microsoft Windows Server 2003 PDF Author: Brian S. Madden
Publisher: The Brian Madden Company, LLC
ISBN: 9780971151048
Category : Computers
Languages : en
Pages : 500

Book Description
Annotation Written by two well-known industry experts, this book shows the reader how to design Terminal Server solutions with Microsoft Windows Server 2003. Rather than a re-hash of the product manuals, this book takes you step-by-step through each aspect of the design process. It focuses on architecture, server type and location, printing, security, management, application deployment, and user profiles. Whether you're using Citrix MetaFrame XP or just building a pure Terminal Server environment, this is the book you need to be successful.

Hybrid Computational Intelligence

Hybrid Computational Intelligence PDF Author: Siddhartha Bhattacharyya
Publisher: Academic Press
ISBN: 012818700X
Category : Computers
Languages : en
Pages : 251

Book Description
Hybrid Computational Intelligence: Challenges and Utilities is a comprehensive resource that begins with the basics and main components of computational intelligence. It brings together many different aspects of the current research on HCI technologies, such as neural networks, support vector machines, fuzzy logic and evolutionary computation, while also covering a wide range of applications and implementation issues, from pattern recognition and system modeling, to intelligent control problems and biomedical applications. The book also explores the most widely used applications of hybrid computation as well as the history of their development. Each individual methodology provides hybrid systems with complementary reasoning and searching methods which allow the use of domain knowledge and empirical data to solve complex problems. - Provides insights into the latest research trends in hybrid intelligent algorithms and architectures - Focuses on the application of hybrid intelligent techniques for pattern mining and recognition, in big data analytics, and in human-computer interaction - Features hybrid intelligent applications in biomedical engineering and healthcare informatics