Author: Herbert K. H. Lee
Publisher: SIAM
ISBN: 0898715636
Category : Mathematics
Languages : en
Pages : 103
Book Description
This is the first book to discuss neural networks in a nonparametric regression and classification context, within the Bayesian paradigm.
Bayesian Nonparametrics via Neural Networks
Author: Herbert K. H. Lee
Publisher: SIAM
ISBN: 0898715636
Category : Mathematics
Languages : en
Pages : 103
Book Description
This is the first book to discuss neural networks in a nonparametric regression and classification context, within the Bayesian paradigm.
Publisher: SIAM
ISBN: 0898715636
Category : Mathematics
Languages : en
Pages : 103
Book Description
This is the first book to discuss neural networks in a nonparametric regression and classification context, within the Bayesian paradigm.
Bayesian Nonparametrics
Author: Nils Lid Hjort
Publisher: Cambridge University Press
ISBN: 1139484605
Category : Mathematics
Languages : en
Pages : 309
Book Description
Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount of data. Computational issues, though challenging, are no longer intractable. All that is needed is an entry point: this intelligent book is the perfect guide to what can seem a forbidding landscape. Tutorial chapters by Ghosal, Lijoi and Prünster, Teh and Jordan, and Dunson advance from theory, to basic models and hierarchical modeling, to applications and implementation, particularly in computer science and biostatistics. These are complemented by companion chapters by the editors and Griffin and Quintana, providing additional models, examining computational issues, identifying future growth areas, and giving links to related topics. This coherent text gives ready access both to underlying principles and to state-of-the-art practice. Specific examples are drawn from information retrieval, NLP, machine vision, computational biology, biostatistics, and bioinformatics.
Publisher: Cambridge University Press
ISBN: 1139484605
Category : Mathematics
Languages : en
Pages : 309
Book Description
Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount of data. Computational issues, though challenging, are no longer intractable. All that is needed is an entry point: this intelligent book is the perfect guide to what can seem a forbidding landscape. Tutorial chapters by Ghosal, Lijoi and Prünster, Teh and Jordan, and Dunson advance from theory, to basic models and hierarchical modeling, to applications and implementation, particularly in computer science and biostatistics. These are complemented by companion chapters by the editors and Griffin and Quintana, providing additional models, examining computational issues, identifying future growth areas, and giving links to related topics. This coherent text gives ready access both to underlying principles and to state-of-the-art practice. Specific examples are drawn from information retrieval, NLP, machine vision, computational biology, biostatistics, and bioinformatics.
Bayesian Nonparametrics
Author: J.K. Ghosh
Publisher: Springer Science & Business Media
ISBN: 0387226540
Category : Mathematics
Languages : en
Pages : 311
Book Description
This book is the first systematic treatment of Bayesian nonparametric methods and the theory behind them. It will also appeal to statisticians in general. The book is primarily aimed at graduate students and can be used as the text for a graduate course in Bayesian non-parametrics.
Publisher: Springer Science & Business Media
ISBN: 0387226540
Category : Mathematics
Languages : en
Pages : 311
Book Description
This book is the first systematic treatment of Bayesian nonparametric methods and the theory behind them. It will also appeal to statisticians in general. The book is primarily aimed at graduate students and can be used as the text for a graduate course in Bayesian non-parametrics.
Statistical Learning Using Neural Networks
Author: Basilio de Braganca Pereira
Publisher: CRC Press
ISBN: 0429775547
Category : Business & Economics
Languages : en
Pages : 286
Book Description
Statistical Learning using Neural Networks: A Guide for Statisticians and Data Scientists with Python introduces artificial neural networks starting from the basics and increasingly demanding more effort from readers, who can learn the theory and its applications in statistical methods with concrete Python code examples. It presents a wide range of widely used statistical methodologies, applied in several research areas with Python code examples, which are available online. It is suitable for scientists and developers as well as graduate students. Key Features: Discusses applications in several research areas Covers a wide range of widely used statistical methodologies Includes Python code examples Gives numerous neural network models This book covers fundamental concepts on Neural Networks including Multivariate Statistics Neural Networks, Regression Neural Network Models, Survival Analysis Networks, Time Series Forecasting Networks, Control Chart Networks, and Statistical Inference Results. This book is suitable for both teaching and research. It introduces neural networks and is a guide for outsiders of academia working in data mining and artificial intelligence (AI). This book brings together data analysis from statistics to computer science using neural networks.
Publisher: CRC Press
ISBN: 0429775547
Category : Business & Economics
Languages : en
Pages : 286
Book Description
Statistical Learning using Neural Networks: A Guide for Statisticians and Data Scientists with Python introduces artificial neural networks starting from the basics and increasingly demanding more effort from readers, who can learn the theory and its applications in statistical methods with concrete Python code examples. It presents a wide range of widely used statistical methodologies, applied in several research areas with Python code examples, which are available online. It is suitable for scientists and developers as well as graduate students. Key Features: Discusses applications in several research areas Covers a wide range of widely used statistical methodologies Includes Python code examples Gives numerous neural network models This book covers fundamental concepts on Neural Networks including Multivariate Statistics Neural Networks, Regression Neural Network Models, Survival Analysis Networks, Time Series Forecasting Networks, Control Chart Networks, and Statistical Inference Results. This book is suitable for both teaching and research. It introduces neural networks and is a guide for outsiders of academia working in data mining and artificial intelligence (AI). This book brings together data analysis from statistics to computer science using neural networks.
Neural Networks in Atmospheric Remote Sensing
Author: William J. Blackwell
Publisher: Artech House
ISBN: 1596933739
Category : Computers
Languages : en
Pages : 232
Book Description
This authoritative reference offers you a comprehensive understanding of the underpinnings and practical applications of artificial neural networks and their use in the retrieval of geophysical parameters. You find expert guidance on the development and evaluation of neural network algorithms that process data from a new generation of hyperspectral sensors. The book provides clear explanations of the mathematical and physical foundations of remote sensing systems, including radiative transfer and propagation theory, sensor technologies, and inversion and estimation approaches. You discover how to use neural networks to approximate remote sensing inverse functions with emphasis on model selection, preprocessing, initialization, training, and performance evaluation.
Publisher: Artech House
ISBN: 1596933739
Category : Computers
Languages : en
Pages : 232
Book Description
This authoritative reference offers you a comprehensive understanding of the underpinnings and practical applications of artificial neural networks and their use in the retrieval of geophysical parameters. You find expert guidance on the development and evaluation of neural network algorithms that process data from a new generation of hyperspectral sensors. The book provides clear explanations of the mathematical and physical foundations of remote sensing systems, including radiative transfer and propagation theory, sensor technologies, and inversion and estimation approaches. You discover how to use neural networks to approximate remote sensing inverse functions with emphasis on model selection, preprocessing, initialization, training, and performance evaluation.
Computational Network Theory
Author: Matthias Dehmer
Publisher: John Wiley & Sons
ISBN: 3527691545
Category : Medical
Languages : en
Pages : 278
Book Description
Diese umfassende Einführung in die rechnergestützte Netzwerktheorie als ein Zweig der Netzwerktheorie baut auf dem Grundsatz auf, dass solche Netzwerke als Werkzeuge zu verstehen sind, mit denen sich durch die Anwendung rechnergestützter Verfahren auf große Mengen an Netzwerkdaten Hypothesen ableiten und verifizieren lassen. Ein Team aus erfahrenden Herausgebern und renommierten Autoren aus der ganzen Welt präsentieren und erläutern eine Vielzahl von repräsentativen Methoden der rechnergestützten Netzwerktheorie, die sich aus der Graphentheorie, rechnergestützten und statistischen Verfahren ableiten. Dieses Referenzwerk überzeugt durch einen einheitlichen Aufbau und Stil und eignet sich auch für Kurse zu rechnergestützten Netzwerken.
Publisher: John Wiley & Sons
ISBN: 3527691545
Category : Medical
Languages : en
Pages : 278
Book Description
Diese umfassende Einführung in die rechnergestützte Netzwerktheorie als ein Zweig der Netzwerktheorie baut auf dem Grundsatz auf, dass solche Netzwerke als Werkzeuge zu verstehen sind, mit denen sich durch die Anwendung rechnergestützter Verfahren auf große Mengen an Netzwerkdaten Hypothesen ableiten und verifizieren lassen. Ein Team aus erfahrenden Herausgebern und renommierten Autoren aus der ganzen Welt präsentieren und erläutern eine Vielzahl von repräsentativen Methoden der rechnergestützten Netzwerktheorie, die sich aus der Graphentheorie, rechnergestützten und statistischen Verfahren ableiten. Dieses Referenzwerk überzeugt durch einen einheitlichen Aufbau und Stil und eignet sich auch für Kurse zu rechnergestützten Netzwerken.
Bayesian Analysis of Stochastic Process Models
Author: David Insua
Publisher: John Wiley & Sons
ISBN: 1118304039
Category : Mathematics
Languages : en
Pages : 315
Book Description
Bayesian analysis of complex models based on stochastic processes has in recent years become a growing area. This book provides a unified treatment of Bayesian analysis of models based on stochastic processes, covering the main classes of stochastic processing including modeling, computational, inference, forecasting, decision making and important applied models. Key features: Explores Bayesian analysis of models based on stochastic processes, providing a unified treatment. Provides a thorough introduction for research students. Computational tools to deal with complex problems are illustrated along with real life case studies Looks at inference, prediction and decision making. Researchers, graduate and advanced undergraduate students interested in stochastic processes in fields such as statistics, operations research (OR), engineering, finance, economics, computer science and Bayesian analysis will benefit from reading this book. With numerous applications included, practitioners of OR, stochastic modelling and applied statistics will also find this book useful.
Publisher: John Wiley & Sons
ISBN: 1118304039
Category : Mathematics
Languages : en
Pages : 315
Book Description
Bayesian analysis of complex models based on stochastic processes has in recent years become a growing area. This book provides a unified treatment of Bayesian analysis of models based on stochastic processes, covering the main classes of stochastic processing including modeling, computational, inference, forecasting, decision making and important applied models. Key features: Explores Bayesian analysis of models based on stochastic processes, providing a unified treatment. Provides a thorough introduction for research students. Computational tools to deal with complex problems are illustrated along with real life case studies Looks at inference, prediction and decision making. Researchers, graduate and advanced undergraduate students interested in stochastic processes in fields such as statistics, operations research (OR), engineering, finance, economics, computer science and Bayesian analysis will benefit from reading this book. With numerous applications included, practitioners of OR, stochastic modelling and applied statistics will also find this book useful.
Case Studies in Bayesian Statistical Modelling and Analysis
Author: Clair L. Alston
Publisher: John Wiley & Sons
ISBN: 1118394321
Category : Mathematics
Languages : en
Pages : 411
Book Description
Provides an accessible foundation to Bayesian analysis using real world models This book aims to present an introduction to Bayesian modelling and computation, by considering real case studies drawn from diverse fields spanning ecology, health, genetics and finance. Each chapter comprises a description of the problem, the corresponding model, the computational method, results and inferences as well as the issues that arise in the implementation of these approaches. Case Studies in Bayesian Statistical Modelling and Analysis: Illustrates how to do Bayesian analysis in a clear and concise manner using real-world problems. Each chapter focuses on a real-world problem and describes the way in which the problem may be analysed using Bayesian methods. Features approaches that can be used in a wide area of application, such as, health, the environment, genetics, information science, medicine, biology, industry and remote sensing. Case Studies in Bayesian Statistical Modelling and Analysis is aimed at statisticians, researchers and practitioners who have some expertise in statistical modelling and analysis, and some understanding of the basics of Bayesian statistics, but little experience in its application. Graduate students of statistics and biostatistics will also find this book beneficial.
Publisher: John Wiley & Sons
ISBN: 1118394321
Category : Mathematics
Languages : en
Pages : 411
Book Description
Provides an accessible foundation to Bayesian analysis using real world models This book aims to present an introduction to Bayesian modelling and computation, by considering real case studies drawn from diverse fields spanning ecology, health, genetics and finance. Each chapter comprises a description of the problem, the corresponding model, the computational method, results and inferences as well as the issues that arise in the implementation of these approaches. Case Studies in Bayesian Statistical Modelling and Analysis: Illustrates how to do Bayesian analysis in a clear and concise manner using real-world problems. Each chapter focuses on a real-world problem and describes the way in which the problem may be analysed using Bayesian methods. Features approaches that can be used in a wide area of application, such as, health, the environment, genetics, information science, medicine, biology, industry and remote sensing. Case Studies in Bayesian Statistical Modelling and Analysis is aimed at statisticians, researchers and practitioners who have some expertise in statistical modelling and analysis, and some understanding of the basics of Bayesian statistics, but little experience in its application. Graduate students of statistics and biostatistics will also find this book beneficial.
AMSTAT News
Author: American Statistical Association
Publisher:
ISBN:
Category : Statistics
Languages : en
Pages : 536
Book Description
Publisher:
ISBN:
Category : Statistics
Languages : en
Pages : 536
Book Description
Predictive Statistics
Author: Bertrand S. Clarke
Publisher: Cambridge University Press
ISBN: 1108594204
Category : Mathematics
Languages : en
Pages : 657
Book Description
All scientific disciplines prize predictive success. Conventional statistical analyses, however, treat prediction as secondary, instead focusing on modeling and hence estimation, testing, and detailed physical interpretation, tackling these tasks before the predictive adequacy of a model is established. This book outlines a fully predictive approach to statistical problems based on studying predictors; the approach does not require predictors correspond to a model although this important special case is included in the general approach. Throughout, the point is to examine predictive performance before considering conventional inference. These ideas are traced through five traditional subfields of statistics, helping readers to refocus and adopt a directly predictive outlook. The book also considers prediction via contemporary 'black box' techniques and emerging data types and methodologies where conventional modeling is so difficult that good prediction is the main criterion available for evaluating the performance of a statistical method. Well-documented open-source R code in a Github repository allows readers to replicate examples and apply techniques to other investigations.
Publisher: Cambridge University Press
ISBN: 1108594204
Category : Mathematics
Languages : en
Pages : 657
Book Description
All scientific disciplines prize predictive success. Conventional statistical analyses, however, treat prediction as secondary, instead focusing on modeling and hence estimation, testing, and detailed physical interpretation, tackling these tasks before the predictive adequacy of a model is established. This book outlines a fully predictive approach to statistical problems based on studying predictors; the approach does not require predictors correspond to a model although this important special case is included in the general approach. Throughout, the point is to examine predictive performance before considering conventional inference. These ideas are traced through five traditional subfields of statistics, helping readers to refocus and adopt a directly predictive outlook. The book also considers prediction via contemporary 'black box' techniques and emerging data types and methodologies where conventional modeling is so difficult that good prediction is the main criterion available for evaluating the performance of a statistical method. Well-documented open-source R code in a Github repository allows readers to replicate examples and apply techniques to other investigations.