Author: Yong Zhou
Publisher: World Scientific
ISBN: 9811271704
Category : Mathematics
Languages : en
Pages : 516
Book Description
This accessible monograph is devoted to a rapidly developing area on the research of qualitative theory of fractional ordinary differential equations and evolution equations. It is self-contained and unified in presentation, and provides the readers the necessary background material required to go further into the subject and explore the rich research literature. The tools used include many classical and modern nonlinear analysis methods such as fixed point theory, measure of noncompactness method, topological degree method, Picard operators technique, critical point theory and semigroups theory. This book is based on the research work done so far by the author and other experts, and contains comprehensive up-to-date materials on the topic.In this third edition, four new topics have been added: Hilfer fractional evolution equations and infinite interval problems, oscillations and nonoscillations, fractional Hamiltonian systems, fractional Rayleigh-Stokes equations, and wave equations. The bibliography has also been updated and expanded.This book is useful to researchers, graduate or PhD students dealing with fractional calculus and applied analysis, differential equations, and related areas of research.
Basic Theory Of Fractional Differential Equations (Third Edition)
Author: Yong Zhou
Publisher: World Scientific
ISBN: 9811271704
Category : Mathematics
Languages : en
Pages : 516
Book Description
This accessible monograph is devoted to a rapidly developing area on the research of qualitative theory of fractional ordinary differential equations and evolution equations. It is self-contained and unified in presentation, and provides the readers the necessary background material required to go further into the subject and explore the rich research literature. The tools used include many classical and modern nonlinear analysis methods such as fixed point theory, measure of noncompactness method, topological degree method, Picard operators technique, critical point theory and semigroups theory. This book is based on the research work done so far by the author and other experts, and contains comprehensive up-to-date materials on the topic.In this third edition, four new topics have been added: Hilfer fractional evolution equations and infinite interval problems, oscillations and nonoscillations, fractional Hamiltonian systems, fractional Rayleigh-Stokes equations, and wave equations. The bibliography has also been updated and expanded.This book is useful to researchers, graduate or PhD students dealing with fractional calculus and applied analysis, differential equations, and related areas of research.
Publisher: World Scientific
ISBN: 9811271704
Category : Mathematics
Languages : en
Pages : 516
Book Description
This accessible monograph is devoted to a rapidly developing area on the research of qualitative theory of fractional ordinary differential equations and evolution equations. It is self-contained and unified in presentation, and provides the readers the necessary background material required to go further into the subject and explore the rich research literature. The tools used include many classical and modern nonlinear analysis methods such as fixed point theory, measure of noncompactness method, topological degree method, Picard operators technique, critical point theory and semigroups theory. This book is based on the research work done so far by the author and other experts, and contains comprehensive up-to-date materials on the topic.In this third edition, four new topics have been added: Hilfer fractional evolution equations and infinite interval problems, oscillations and nonoscillations, fractional Hamiltonian systems, fractional Rayleigh-Stokes equations, and wave equations. The bibliography has also been updated and expanded.This book is useful to researchers, graduate or PhD students dealing with fractional calculus and applied analysis, differential equations, and related areas of research.
Basic Theory of Fractional Differential Equations
Author: Yong Zhou
Publisher: World Scientific Publishing Company
ISBN: 9789811271687
Category :
Languages : en
Pages : 0
Book Description
This accessible monograph is devoted to a rapidly developing area on the research of qualitative theory of fractional ordinary differential equations and evolution equations. It is self-contained and unified in presentation, and provides the readers the necessary background material required to go further into the subject and explore the rich research literature. The tools used include many classical and modern nonlinear analysis methods such as fixed point theory, measure of noncompactness method, topological degree method, Picard operators technique, critical point theory and semigroups theory. This book is based on the research work done so far by the author and other experts, and contains comprehensive up-to-date materials on the topic.In this third edition, four new topics have been added: Hilfer fractional evolution equations and infinite interval problems, oscillations and nonoscillations, fractional Hamiltonian systems, fractional Rayleigh-Stokes equations, and wave equations. The bibliography has also been updated and expanded.This book is useful to researchers, graduate or PhD students dealing with fractional calculus and applied analysis, differential equations, and related areas of research.
Publisher: World Scientific Publishing Company
ISBN: 9789811271687
Category :
Languages : en
Pages : 0
Book Description
This accessible monograph is devoted to a rapidly developing area on the research of qualitative theory of fractional ordinary differential equations and evolution equations. It is self-contained and unified in presentation, and provides the readers the necessary background material required to go further into the subject and explore the rich research literature. The tools used include many classical and modern nonlinear analysis methods such as fixed point theory, measure of noncompactness method, topological degree method, Picard operators technique, critical point theory and semigroups theory. This book is based on the research work done so far by the author and other experts, and contains comprehensive up-to-date materials on the topic.In this third edition, four new topics have been added: Hilfer fractional evolution equations and infinite interval problems, oscillations and nonoscillations, fractional Hamiltonian systems, fractional Rayleigh-Stokes equations, and wave equations. The bibliography has also been updated and expanded.This book is useful to researchers, graduate or PhD students dealing with fractional calculus and applied analysis, differential equations, and related areas of research.
Basic Theory of Fractional Differential Equations
Author: Yong Zhou
Publisher: World Scientific Publishing Company Incorporated
ISBN: 9789814579896
Category : Mathematics
Languages : en
Pages : 293
Book Description
This invaluable book is devoted to a rapidly developing area on the research of the qualitative theory of fractional differential equations. It is self-contained and unified in presentation, and provides readers the necessary background material required to go further into the subject and explore the rich research literature. The tools used include many classical and modern nonlinear analysis methods such as fixed point theory, measure of noncompactness method, topological degree method, the Picard operators technique, critical point theory and semigroups theory. Based on research work carried out by the author and other experts during the past four years, the contents are very new and comprehensive. It is useful to researchers and graduate students for research, seminars, and advanced graduate courses, in pure and applied mathematics, physics, mechanics, engineering, biology, and related disciplines.
Publisher: World Scientific Publishing Company Incorporated
ISBN: 9789814579896
Category : Mathematics
Languages : en
Pages : 293
Book Description
This invaluable book is devoted to a rapidly developing area on the research of the qualitative theory of fractional differential equations. It is self-contained and unified in presentation, and provides readers the necessary background material required to go further into the subject and explore the rich research literature. The tools used include many classical and modern nonlinear analysis methods such as fixed point theory, measure of noncompactness method, topological degree method, the Picard operators technique, critical point theory and semigroups theory. Based on research work carried out by the author and other experts during the past four years, the contents are very new and comprehensive. It is useful to researchers and graduate students for research, seminars, and advanced graduate courses, in pure and applied mathematics, physics, mechanics, engineering, biology, and related disciplines.
Theory and Applications of Fractional Differential Equations
Author: A.A. Kilbas
Publisher: Elsevier
ISBN: 9780444518323
Category : Mathematics
Languages : en
Pages : 550
Book Description
This work aims to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy Type and Cauchy problems involving nonlinear ordinary fractional differential equations.
Publisher: Elsevier
ISBN: 9780444518323
Category : Mathematics
Languages : en
Pages : 550
Book Description
This work aims to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy Type and Cauchy problems involving nonlinear ordinary fractional differential equations.
The Analysis of Fractional Differential Equations
Author: Kai Diethelm
Publisher: Springer
ISBN: 3642145744
Category : Mathematics
Languages : en
Pages : 251
Book Description
Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.
Publisher: Springer
ISBN: 3642145744
Category : Mathematics
Languages : en
Pages : 251
Book Description
Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.
Time-Fractional Differential Equations
Author: Adam Kubica
Publisher: Springer Nature
ISBN: 9811590664
Category : Mathematics
Languages : en
Pages : 134
Book Description
This book aims to establish a foundation for fractional derivatives and fractional differential equations. The theory of fractional derivatives enables considering any positive order of differentiation. The history of research in this field is very long, with its origins dating back to Leibniz. Since then, many great mathematicians, such as Abel, have made contributions that cover not only theoretical aspects but also physical applications of fractional calculus. The fractional partial differential equations govern phenomena depending both on spatial and time variables and require more subtle treatments. Moreover, fractional partial differential equations are highly demanded model equations for solving real-world problems such as the anomalous diffusion in heterogeneous media. The studies of fractional partial differential equations have continued to expand explosively. However we observe that available mathematical theory for fractional partial differential equations is not still complete. In particular, operator-theoretical approaches are indispensable for some generalized categories of solutions such as weak solutions, but feasible operator-theoretic foundations for wide applications are not available in monographs. To make this monograph more readable, we are restricting it to a few fundamental types of time-fractional partial differential equations, forgoing many other important and exciting topics such as stability for nonlinear problems. However, we believe that this book works well as an introduction to mathematical research in such vast fields.
Publisher: Springer Nature
ISBN: 9811590664
Category : Mathematics
Languages : en
Pages : 134
Book Description
This book aims to establish a foundation for fractional derivatives and fractional differential equations. The theory of fractional derivatives enables considering any positive order of differentiation. The history of research in this field is very long, with its origins dating back to Leibniz. Since then, many great mathematicians, such as Abel, have made contributions that cover not only theoretical aspects but also physical applications of fractional calculus. The fractional partial differential equations govern phenomena depending both on spatial and time variables and require more subtle treatments. Moreover, fractional partial differential equations are highly demanded model equations for solving real-world problems such as the anomalous diffusion in heterogeneous media. The studies of fractional partial differential equations have continued to expand explosively. However we observe that available mathematical theory for fractional partial differential equations is not still complete. In particular, operator-theoretical approaches are indispensable for some generalized categories of solutions such as weak solutions, but feasible operator-theoretic foundations for wide applications are not available in monographs. To make this monograph more readable, we are restricting it to a few fundamental types of time-fractional partial differential equations, forgoing many other important and exciting topics such as stability for nonlinear problems. However, we believe that this book works well as an introduction to mathematical research in such vast fields.
Fractional Calculus: An Introduction For Physicists (Third Edition)
Author: Richard Herrmann
Publisher: World Scientific
ISBN: 981327459X
Category : Science
Languages : en
Pages : 635
Book Description
'The third edition of this book is designed to carefully and coherently introduce fractional calculus to physicists, by applying the ideas to two distinct applications: classical problems and multi-particle quantum problems. There remain many open questions and the field remains an active area of research. Dr Herrmann’s book is an excellent introduction to this field of study.'Contemporary PhysicsThe book presents a concise introduction to the basic methods and strategies in fractional calculus which enables the reader to catch up with the state-of-the-art in this field and to participate and contribute in the development of this exciting research area.This book is devoted to the application of fractional calculus on physical problems. The fractional concept is applied to subjects in classical mechanics, image processing, folded potentials in cluster physics, infrared spectroscopy, group theory, quantum mechanics, nuclear physics, hadron spectroscopy up to quantum field theory and will surprise the reader with new intriguing insights.This new, extended edition includes additional chapters about numerical solution of the fractional Schrödinger equation, self-similarity and the geometric interpretation of non-isotropic fractional differential operators. Motivated by the positive response, new exercises with elaborated solutions are added, which significantly support a deeper understanding of the general aspects of the theory.Besides students as well as researchers in this field, this book will also be useful as a supporting medium for teachers teaching courses devoted to this subject.
Publisher: World Scientific
ISBN: 981327459X
Category : Science
Languages : en
Pages : 635
Book Description
'The third edition of this book is designed to carefully and coherently introduce fractional calculus to physicists, by applying the ideas to two distinct applications: classical problems and multi-particle quantum problems. There remain many open questions and the field remains an active area of research. Dr Herrmann’s book is an excellent introduction to this field of study.'Contemporary PhysicsThe book presents a concise introduction to the basic methods and strategies in fractional calculus which enables the reader to catch up with the state-of-the-art in this field and to participate and contribute in the development of this exciting research area.This book is devoted to the application of fractional calculus on physical problems. The fractional concept is applied to subjects in classical mechanics, image processing, folded potentials in cluster physics, infrared spectroscopy, group theory, quantum mechanics, nuclear physics, hadron spectroscopy up to quantum field theory and will surprise the reader with new intriguing insights.This new, extended edition includes additional chapters about numerical solution of the fractional Schrödinger equation, self-similarity and the geometric interpretation of non-isotropic fractional differential operators. Motivated by the positive response, new exercises with elaborated solutions are added, which significantly support a deeper understanding of the general aspects of the theory.Besides students as well as researchers in this field, this book will also be useful as a supporting medium for teachers teaching courses devoted to this subject.
Fractional Differential Equations
Author: Bangti Jin
Publisher: Springer Nature
ISBN: 303076043X
Category : Mathematics
Languages : en
Pages : 377
Book Description
This graduate textbook provides a self-contained introduction to modern mathematical theory on fractional differential equations. It addresses both ordinary and partial differential equations with a focus on detailed solution theory, especially regularity theory under realistic assumptions on the problem data. The text includes an extensive bibliography, application-driven modeling, extensive exercises, and graphic illustrations throughout to complement its comprehensive presentation of the field. It is recommended for graduate students and researchers in applied and computational mathematics, particularly applied analysis, numerical analysis and inverse problems.
Publisher: Springer Nature
ISBN: 303076043X
Category : Mathematics
Languages : en
Pages : 377
Book Description
This graduate textbook provides a self-contained introduction to modern mathematical theory on fractional differential equations. It addresses both ordinary and partial differential equations with a focus on detailed solution theory, especially regularity theory under realistic assumptions on the problem data. The text includes an extensive bibliography, application-driven modeling, extensive exercises, and graphic illustrations throughout to complement its comprehensive presentation of the field. It is recommended for graduate students and researchers in applied and computational mathematics, particularly applied analysis, numerical analysis and inverse problems.
Fractional Calculus and Fractional Differential Equations
Author: Varsha Daftardar-Gejji
Publisher: Springer
ISBN: 9811392277
Category : Mathematics
Languages : en
Pages : 187
Book Description
This book provides a broad overview of the latest developments in fractional calculus and fractional differential equations (FDEs) with an aim to motivate the readers to venture into these areas. It also presents original research describing the fractional operators of variable order, fractional-order delay differential equations, chaos and related phenomena in detail. Selected results on the stability of solutions of nonlinear dynamical systems of the non-commensurate fractional order have also been included. Furthermore, artificial neural network and fractional differential equations are elaborated on; and new transform methods (for example, Sumudu methods) and how they can be employed to solve fractional partial differential equations are discussed. The book covers the latest research on a variety of topics, including: comparison of various numerical methods for solving FDEs, the Adomian decomposition method and its applications to fractional versions of the classical Poisson processes, variable-order fractional operators, fractional variational principles, fractional delay differential equations, fractional-order dynamical systems and stability analysis, inequalities and comparison theorems in FDEs, artificial neural network approximation for fractional operators, and new transform methods for solving partial FDEs. Given its scope and level of detail, the book will be an invaluable asset for researchers working in these areas.
Publisher: Springer
ISBN: 9811392277
Category : Mathematics
Languages : en
Pages : 187
Book Description
This book provides a broad overview of the latest developments in fractional calculus and fractional differential equations (FDEs) with an aim to motivate the readers to venture into these areas. It also presents original research describing the fractional operators of variable order, fractional-order delay differential equations, chaos and related phenomena in detail. Selected results on the stability of solutions of nonlinear dynamical systems of the non-commensurate fractional order have also been included. Furthermore, artificial neural network and fractional differential equations are elaborated on; and new transform methods (for example, Sumudu methods) and how they can be employed to solve fractional partial differential equations are discussed. The book covers the latest research on a variety of topics, including: comparison of various numerical methods for solving FDEs, the Adomian decomposition method and its applications to fractional versions of the classical Poisson processes, variable-order fractional operators, fractional variational principles, fractional delay differential equations, fractional-order dynamical systems and stability analysis, inequalities and comparison theorems in FDEs, artificial neural network approximation for fractional operators, and new transform methods for solving partial FDEs. Given its scope and level of detail, the book will be an invaluable asset for researchers working in these areas.
Fractional Differential Equations: Numerical Methods for Applications
Author: Matthew Harker
Publisher: Springer
ISBN: 9783030323769
Category : Technology & Engineering
Languages : en
Pages : 466
Book Description
This book provides a comprehensive set of practical tools for exploring and discovering the world of fractional calculus and its applications, and thereby a means of bridging the theory of fractional differential equations (FDE) with real-world facts. These tools seamlessly blend centuries old numerical methods such as Gaussian quadrature that have stood the test of time with pioneering concepts such as hypermatrix equations to harness the emerging capabilities of modern scientific computing environments. This unique fusion of old and new leads to a unified approach that intuitively parallels the classic theory of differential equations, and results in methods that are unprecedented in computational speed and numerical accuracy. The opening chapter is an introduction to fractional calculus that is geared towards scientists and engineers. The following chapter introduces the reader to the key concepts of approximation theory with an emphasis on the tools of numerical linear algebra. The third chapter provides the keystone for the remainder of the book with a comprehensive set of methods for the approximation of fractional order integrals and derivatives. The fourth chapter describes the numerical solution of initial and boundary value problems for FDE of a single variable, both linear and nonlinear. Moving to two, three, and four dimensions, the ensuing chapter is devoted to a novel approach to the numerical solution of partial FDE that leverages the little-known one-to-one relation between partial differential equations and matrix and hypermatrix equations. The emphasis on applications culminates in the final chapter by addressing inverse problems for ordinary and partial FDE, such as smoothing for data analytics, and the all-important system identification problem. Over a century ago, scientists such as Ludwig Boltzmann and Vito Volterra formulated mathematical models of real materials that -- based on physical evidence -- integrated the history of the system. The present book will be invaluable to students and researchers in fields where analogous phenomena arise, such as viscoelasticity, rheology, polymer dynamics, non-Newtonian fluids, bioengineering, electrochemistry, non-conservative mechanics, groundwater hydrology, NMR and computed tomography, mathematical economics, thermomechanics, anomalous diffusion and transport, control theory, supercapacitors, and genetic algorithms, to name but a few. These investigators will be well-equipped with reproducible numerical methods to explore and discover their particular field of application of FDE.
Publisher: Springer
ISBN: 9783030323769
Category : Technology & Engineering
Languages : en
Pages : 466
Book Description
This book provides a comprehensive set of practical tools for exploring and discovering the world of fractional calculus and its applications, and thereby a means of bridging the theory of fractional differential equations (FDE) with real-world facts. These tools seamlessly blend centuries old numerical methods such as Gaussian quadrature that have stood the test of time with pioneering concepts such as hypermatrix equations to harness the emerging capabilities of modern scientific computing environments. This unique fusion of old and new leads to a unified approach that intuitively parallels the classic theory of differential equations, and results in methods that are unprecedented in computational speed and numerical accuracy. The opening chapter is an introduction to fractional calculus that is geared towards scientists and engineers. The following chapter introduces the reader to the key concepts of approximation theory with an emphasis on the tools of numerical linear algebra. The third chapter provides the keystone for the remainder of the book with a comprehensive set of methods for the approximation of fractional order integrals and derivatives. The fourth chapter describes the numerical solution of initial and boundary value problems for FDE of a single variable, both linear and nonlinear. Moving to two, three, and four dimensions, the ensuing chapter is devoted to a novel approach to the numerical solution of partial FDE that leverages the little-known one-to-one relation between partial differential equations and matrix and hypermatrix equations. The emphasis on applications culminates in the final chapter by addressing inverse problems for ordinary and partial FDE, such as smoothing for data analytics, and the all-important system identification problem. Over a century ago, scientists such as Ludwig Boltzmann and Vito Volterra formulated mathematical models of real materials that -- based on physical evidence -- integrated the history of the system. The present book will be invaluable to students and researchers in fields where analogous phenomena arise, such as viscoelasticity, rheology, polymer dynamics, non-Newtonian fluids, bioengineering, electrochemistry, non-conservative mechanics, groundwater hydrology, NMR and computed tomography, mathematical economics, thermomechanics, anomalous diffusion and transport, control theory, supercapacitors, and genetic algorithms, to name but a few. These investigators will be well-equipped with reproducible numerical methods to explore and discover their particular field of application of FDE.