Author: M. Capitelli
Publisher: Springer Science & Business Media
ISBN: 3662041588
Category : Science
Languages : en
Pages : 302
Book Description
Emphasis is placed on the analysis of translational, rotational, vibrational and electronically excited state kinetics, coupled to the electron Boltzmann equation.
Plasma Kinetics in Atmospheric Gases
Author: M. Capitelli
Publisher: Springer Science & Business Media
ISBN: 3662041588
Category : Science
Languages : en
Pages : 302
Book Description
Emphasis is placed on the analysis of translational, rotational, vibrational and electronically excited state kinetics, coupled to the electron Boltzmann equation.
Publisher: Springer Science & Business Media
ISBN: 3662041588
Category : Science
Languages : en
Pages : 302
Book Description
Emphasis is placed on the analysis of translational, rotational, vibrational and electronically excited state kinetics, coupled to the electron Boltzmann equation.
Theory of Gas Discharge Plasma
Author: Boris M. Smirnov
Publisher: Springer
ISBN: 3319110659
Category : Science
Languages : en
Pages : 424
Book Description
This book presents the theory of gas discharge plasmas in a didactical way. It explains the processes in gas discharge plasmas. A gas discharge plasma is an ionized gas which is supported by an external electric field. Therefore its parameters are determined by processes in it. The properties of a gas discharge plasma depend on its gas component, types of external fields, their geometry and regimes of gas discharge. Fundamentals of a gas discharge plasma include elementary, radiative and transport processes which are included in its kinetics influence. They are represented in this book together with the analysis of simple gas discharges. These general principles are applied to stationary gas discharge plasmas of helium and argon. The analysis of such plasmas under certain conditions is theoretically determined by numerical plasma parameters for given regimes and conditions.
Publisher: Springer
ISBN: 3319110659
Category : Science
Languages : en
Pages : 424
Book Description
This book presents the theory of gas discharge plasmas in a didactical way. It explains the processes in gas discharge plasmas. A gas discharge plasma is an ionized gas which is supported by an external electric field. Therefore its parameters are determined by processes in it. The properties of a gas discharge plasma depend on its gas component, types of external fields, their geometry and regimes of gas discharge. Fundamentals of a gas discharge plasma include elementary, radiative and transport processes which are included in its kinetics influence. They are represented in this book together with the analysis of simple gas discharges. These general principles are applied to stationary gas discharge plasmas of helium and argon. The analysis of such plasmas under certain conditions is theoretically determined by numerical plasma parameters for given regimes and conditions.
An Introduction to the Atomic and Radiation Physics of Plasmas
Author: G. J. Tallents
Publisher: Cambridge University Press
ISBN: 1108419542
Category : Science
Languages : en
Pages : 313
Book Description
The physics of emission, absorption and interaction of light in astrophysics and in laboratory plasmas is developed from first principles and applied across various fields, from quantum mechanics, electricity and magnetism, to statistical physics. This text links undergraduate level atomic and radiation physics with the advanced material required for postgraduate study and research.
Publisher: Cambridge University Press
ISBN: 1108419542
Category : Science
Languages : en
Pages : 313
Book Description
The physics of emission, absorption and interaction of light in astrophysics and in laboratory plasmas is developed from first principles and applied across various fields, from quantum mechanics, electricity and magnetism, to statistical physics. This text links undergraduate level atomic and radiation physics with the advanced material required for postgraduate study and research.
Physics of Ionized Gases
Author: Boris M. Smirnov
Publisher: John Wiley & Sons
ISBN: 352761771X
Category : Science
Languages : en
Pages : 398
Book Description
A comprehensive textbook and reference for the study of the physics of ionized gases The intent of this book is to provide deep physical insight into the behavior of gases containing atoms and molecules from which one or more electrons have been ionized. The study of these so-called plasmas begins with an overview of plasmas as they are found in nature and created in the laboratory. This serves as a prelude to a comprehensive study of plasmas, beginning with low temperature and "ideal" plasmas and extending to radiation and particle transport phenomena, the response of plasmas to external fields, and an insightful treatment of plasma waves, plasma instabilities, nonlinear phenomena in plasmas, and the study of plasma interactions with surfaces. In all cases, the emphasis is on a clear and unified understanding of the basic physics that underlies all plasma phenomena. Thus, there are chapters on plasma behavior from the viewpoint of atomic and molecular physics, as well as on the macroscopic phenomena involved in physical kinetics of plasmas and the transport of radiation and of charged particles within plasmas. With this grounding in the fundamental physics of plasmas, the notoriously difficult subjects of nonlinear phenomena and of instabilities in plasmas are then treated with comprehensive clarity.
Publisher: John Wiley & Sons
ISBN: 352761771X
Category : Science
Languages : en
Pages : 398
Book Description
A comprehensive textbook and reference for the study of the physics of ionized gases The intent of this book is to provide deep physical insight into the behavior of gases containing atoms and molecules from which one or more electrons have been ionized. The study of these so-called plasmas begins with an overview of plasmas as they are found in nature and created in the laboratory. This serves as a prelude to a comprehensive study of plasmas, beginning with low temperature and "ideal" plasmas and extending to radiation and particle transport phenomena, the response of plasmas to external fields, and an insightful treatment of plasma waves, plasma instabilities, nonlinear phenomena in plasmas, and the study of plasma interactions with surfaces. In all cases, the emphasis is on a clear and unified understanding of the basic physics that underlies all plasma phenomena. Thus, there are chapters on plasma behavior from the viewpoint of atomic and molecular physics, as well as on the macroscopic phenomena involved in physical kinetics of plasmas and the transport of radiation and of charged particles within plasmas. With this grounding in the fundamental physics of plasmas, the notoriously difficult subjects of nonlinear phenomena and of instabilities in plasmas are then treated with comprehensive clarity.
Atomic Processes in Plasmas
Author: David R. Schultz
Publisher: American Inst. of Physics
ISBN: 9780735400900
Category : Science
Languages : en
Pages : 328
Book Description
The APS Topical Conference on Atomic Processes in Plasmas brings together researchers working in atomic physics and in plasma science, emphasizing the strong and synergistic overlap of these fields. The latest developments in atomic physics reported are recent advances in plasma science, such as in magnetic or inertial confinement fusion, Z-pinches, astrophysics, and technical plasma processing.
Publisher: American Inst. of Physics
ISBN: 9780735400900
Category : Science
Languages : en
Pages : 328
Book Description
The APS Topical Conference on Atomic Processes in Plasmas brings together researchers working in atomic physics and in plasma science, emphasizing the strong and synergistic overlap of these fields. The latest developments in atomic physics reported are recent advances in plasma science, such as in magnetic or inertial confinement fusion, Z-pinches, astrophysics, and technical plasma processing.
An Introduction to Plasma Physics and Its Space Applications, Volume 1
Author: Luis Conde
Publisher: Morgan & Claypool Publishers
ISBN: 1643271741
Category : Science
Languages : en
Pages : 130
Book Description
The growing number of scientific and technological applications of plasma physics in the field of Aerospace Engineering requires that graduate students and professionals understand their principles. This introductory book is the expanded version of class notes of lectures I taught for several years to students of Aerospace Engineering and Physics. It is intended as a reading guide, addressed to students and non-specialists to tackle later with more advanced texts. To make the subject more accessible the book does not follow the usual organization of standard textbooks in this field and is divided in two parts. The first introduces the basic kinetic theory (molecular collisions, mean free path, etc.) of neutral gases in equilibrium in connection to the undergraduate physics courses. The basic properties of ionized gases and plasmas (Debye length, plasma frequencies, etc.) are addressed in relation to their equilibrium states and the collisional processes at the microscopic level. The physical description of short and long-range (Coulomb) collisions and the more relevant collisions (elementary processes) between electrons' ions and neutral atoms or molecules are discussed. The second part introduces the physical description of plasmas as a statistical system of interacting particles introducing advanced concepts of kinetic theory, (non-equilibrium distribution functions, Boltzmann collision operator, etc). The fluid transport equations for plasmas of electron ions and neutral atoms and the hydrodynamic models of interest in space science and plasma technology are derived. The plasma production in the laboratory in the context of the physics of electric breakdown is also discussed. Finally, among the myriad of aerospace applications of plasma physics, the low pressure microwave electron multipactor breakdown and plasma thrusters for space propulsion are presented in two separate chapters.
Publisher: Morgan & Claypool Publishers
ISBN: 1643271741
Category : Science
Languages : en
Pages : 130
Book Description
The growing number of scientific and technological applications of plasma physics in the field of Aerospace Engineering requires that graduate students and professionals understand their principles. This introductory book is the expanded version of class notes of lectures I taught for several years to students of Aerospace Engineering and Physics. It is intended as a reading guide, addressed to students and non-specialists to tackle later with more advanced texts. To make the subject more accessible the book does not follow the usual organization of standard textbooks in this field and is divided in two parts. The first introduces the basic kinetic theory (molecular collisions, mean free path, etc.) of neutral gases in equilibrium in connection to the undergraduate physics courses. The basic properties of ionized gases and plasmas (Debye length, plasma frequencies, etc.) are addressed in relation to their equilibrium states and the collisional processes at the microscopic level. The physical description of short and long-range (Coulomb) collisions and the more relevant collisions (elementary processes) between electrons' ions and neutral atoms or molecules are discussed. The second part introduces the physical description of plasmas as a statistical system of interacting particles introducing advanced concepts of kinetic theory, (non-equilibrium distribution functions, Boltzmann collision operator, etc). The fluid transport equations for plasmas of electron ions and neutral atoms and the hydrodynamic models of interest in space science and plasma technology are derived. The plasma production in the laboratory in the context of the physics of electric breakdown is also discussed. Finally, among the myriad of aerospace applications of plasma physics, the low pressure microwave electron multipactor breakdown and plasma thrusters for space propulsion are presented in two separate chapters.
Physics of Ultra-Cold Matter
Author: J.T. Mendonça
Publisher: Springer Science & Business Media
ISBN: 1461454131
Category : Science
Languages : en
Pages : 411
Book Description
The advent of laser cooling of atoms led to the discovery of ultra-cold matter, with temperatures below liquid Helium, which displays a variety of new physical phenomena. Physics of Ultra-Cold Matter gives an overview of this recent area of science, with a discussion of its main results and a description of its theoretical concepts and methods. Ultra-cold matter can be considered in three distinct phases: ultra-cold gas, Bose Einstein condensate, and Rydberg plasmas. This book gives an integrated view of this new area of science at the frontier between atomic physics, condensed matter, and plasma physics. It describes these three distinct phases while exploring the differences, as well as the sometimes unexpected similarities, of their respective theoretical methods. This book is an informative guide for researchers, and the benefits are a result from an integrated view of a very broad area of research, which is limited in previous books about this subject. The main unifying tool explored in this book is the wave kinetic theory based on Wigner functions. Other theoretical approaches, eventually more familiar to the reader, are also given for extension and comparison. The book considers laser cooling techniques, atom-atom interactions, and focuses on the elementary excitations and collective oscillations in atomic clouds, Bose-Einstein condensates, and Rydberg plasmas. Linear and nonlinear processes are considered, including Landau damping, soliton excitation and vortices. Atomic interferometers and quantum coherence are also included.
Publisher: Springer Science & Business Media
ISBN: 1461454131
Category : Science
Languages : en
Pages : 411
Book Description
The advent of laser cooling of atoms led to the discovery of ultra-cold matter, with temperatures below liquid Helium, which displays a variety of new physical phenomena. Physics of Ultra-Cold Matter gives an overview of this recent area of science, with a discussion of its main results and a description of its theoretical concepts and methods. Ultra-cold matter can be considered in three distinct phases: ultra-cold gas, Bose Einstein condensate, and Rydberg plasmas. This book gives an integrated view of this new area of science at the frontier between atomic physics, condensed matter, and plasma physics. It describes these three distinct phases while exploring the differences, as well as the sometimes unexpected similarities, of their respective theoretical methods. This book is an informative guide for researchers, and the benefits are a result from an integrated view of a very broad area of research, which is limited in previous books about this subject. The main unifying tool explored in this book is the wave kinetic theory based on Wigner functions. Other theoretical approaches, eventually more familiar to the reader, are also given for extension and comparison. The book considers laser cooling techniques, atom-atom interactions, and focuses on the elementary excitations and collective oscillations in atomic clouds, Bose-Einstein condensates, and Rydberg plasmas. Linear and nonlinear processes are considered, including Landau damping, soliton excitation and vortices. Atomic interferometers and quantum coherence are also included.
Fundamental Electron Interactions with Plasma Processing Gases
Author: Loucas G. Christophorou
Publisher: Springer Science & Business Media
ISBN: 9780306480379
Category : Science
Languages : en
Pages : 806
Book Description
This volume deals with the basic knowledge and understanding of the fundamental interactions of low-energy electrons with molecules. Recent advances in electron-molecule interaction processes are discussed and a unique up-to-date and comprehensive account of the fundamental interactions of low-energy electrons with molecules of current interest in modern technology, specially the semiconductor industry, is presented. The material provided in this volume will aid scientists and engineers working in many fields of basic and applied science and engineering. The unique and authoritative knowledge, information, and understanding it provides generically underpins advances in plasma, laser, lighting, discharge, environmental, radiation, and other technologies.
Publisher: Springer Science & Business Media
ISBN: 9780306480379
Category : Science
Languages : en
Pages : 806
Book Description
This volume deals with the basic knowledge and understanding of the fundamental interactions of low-energy electrons with molecules. Recent advances in electron-molecule interaction processes are discussed and a unique up-to-date and comprehensive account of the fundamental interactions of low-energy electrons with molecules of current interest in modern technology, specially the semiconductor industry, is presented. The material provided in this volume will aid scientists and engineers working in many fields of basic and applied science and engineering. The unique and authoritative knowledge, information, and understanding it provides generically underpins advances in plasma, laser, lighting, discharge, environmental, radiation, and other technologies.
Introduction to Plasma Physics
Author: R.J Goldston
Publisher: CRC Press
ISBN: 9781439822074
Category : Science
Languages : en
Pages : 514
Book Description
Introduction to Plasma Physics is the standard text for an introductory lecture course on plasma physics. The text's six sections lead readers systematically and comprehensively through the fundamentals of modern plasma physics. Sections on single-particle motion, plasmas as fluids, and collisional processes in plasmas lay the groundwork for a thorough understanding of the subject. The authors take care to place the material in its historical context for a rich understanding of the ideas presented. They also emphasize the importance of medical imaging in radiotherapy, providing a logical link to more advanced works in the area. The text includes problems, tables, and illustrations as well as a thorough index and a complete list of references.
Publisher: CRC Press
ISBN: 9781439822074
Category : Science
Languages : en
Pages : 514
Book Description
Introduction to Plasma Physics is the standard text for an introductory lecture course on plasma physics. The text's six sections lead readers systematically and comprehensively through the fundamentals of modern plasma physics. Sections on single-particle motion, plasmas as fluids, and collisional processes in plasmas lay the groundwork for a thorough understanding of the subject. The authors take care to place the material in its historical context for a rich understanding of the ideas presented. They also emphasize the importance of medical imaging in radiotherapy, providing a logical link to more advanced works in the area. The text includes problems, tables, and illustrations as well as a thorough index and a complete list of references.
Modern Methods in Collisional-Radiative Modeling of Plasmas
Author: Yuri Ralchenko
Publisher: Springer
ISBN: 3319275143
Category : Science
Languages : en
Pages : 220
Book Description
This book provides a compact yet comprehensive overview of recent developments in collisional-radiative (CR) modeling of laboratory and astrophysical plasmas. It describes advances across the entire field, from basic considerations of model completeness to validation and verification of CR models to calculation of plasma kinetic characteristics and spectra in diverse plasmas. Various approaches to CR modeling are presented, together with numerous examples of applications. A number of important topics, such as atomic models for CR modeling, atomic data and its availability and quality, radiation transport, non-Maxwellian effects on plasma emission, ionization potential lowering, and verification and validation of CR models, are thoroughly addressed. Strong emphasis is placed on the most recent developments in the field, such as XFEL spectroscopy. Written by leading international research scientists from a number of key laboratories, the book offers a timely summary of the most recent progress in this area. It will be a useful and practical guide for students and experienced researchers working in plasma spectroscopy, spectra simulations, and related fields.
Publisher: Springer
ISBN: 3319275143
Category : Science
Languages : en
Pages : 220
Book Description
This book provides a compact yet comprehensive overview of recent developments in collisional-radiative (CR) modeling of laboratory and astrophysical plasmas. It describes advances across the entire field, from basic considerations of model completeness to validation and verification of CR models to calculation of plasma kinetic characteristics and spectra in diverse plasmas. Various approaches to CR modeling are presented, together with numerous examples of applications. A number of important topics, such as atomic models for CR modeling, atomic data and its availability and quality, radiation transport, non-Maxwellian effects on plasma emission, ionization potential lowering, and verification and validation of CR models, are thoroughly addressed. Strong emphasis is placed on the most recent developments in the field, such as XFEL spectroscopy. Written by leading international research scientists from a number of key laboratories, the book offers a timely summary of the most recent progress in this area. It will be a useful and practical guide for students and experienced researchers working in plasma spectroscopy, spectra simulations, and related fields.