Author: Klaus Bartschat
Publisher: Springer
ISBN: 3642610102
Category : Science
Languages : en
Pages : 264
Book Description
Computational Atomic Physics deals with computational methods for calculating electron (and positron) scattering from atoms and ions, including elastic scattering, excitation, and ionization processes. Each chapter is divided into abstract, theory, computer program with sample input and output, summary, suggested problems, and references. An MS-DOS diskette is included, which holds 11 programs covering the features of each chapter and therefore contributing to a deeper understanding of the field. Thus the book provides a unique practical application of advanced quantum mechanics.
Computational Atomic Physics
Author: Klaus Bartschat
Publisher: Springer
ISBN: 3642610102
Category : Science
Languages : en
Pages : 264
Book Description
Computational Atomic Physics deals with computational methods for calculating electron (and positron) scattering from atoms and ions, including elastic scattering, excitation, and ionization processes. Each chapter is divided into abstract, theory, computer program with sample input and output, summary, suggested problems, and references. An MS-DOS diskette is included, which holds 11 programs covering the features of each chapter and therefore contributing to a deeper understanding of the field. Thus the book provides a unique practical application of advanced quantum mechanics.
Publisher: Springer
ISBN: 3642610102
Category : Science
Languages : en
Pages : 264
Book Description
Computational Atomic Physics deals with computational methods for calculating electron (and positron) scattering from atoms and ions, including elastic scattering, excitation, and ionization processes. Each chapter is divided into abstract, theory, computer program with sample input and output, summary, suggested problems, and references. An MS-DOS diskette is included, which holds 11 programs covering the features of each chapter and therefore contributing to a deeper understanding of the field. Thus the book provides a unique practical application of advanced quantum mechanics.
Atomic Physics
Author: Paul Ewart
Publisher: Morgan & Claypool Publishers
ISBN: 164327404X
Category : Science
Languages : en
Pages : 101
Book Description
Atomic Physics provides a concise treatment of atomic physics and a basis to prepare for work in other disciplines that are underpinned by atomic physics such as chemistry, biology and several aspects of engineering science. The focus is mainly on atomic structure since this is what is primarily responsible for the physical properties of atoms. After a brief introduction to some basic concepts, the perturbation theory approach follows the hierarchy of interactions starting with the largest. The other interactions of spin, and angular momentum of the outermost electrons with each other, the nucleus and external magnetic fields are treated in order of descending strength. A spectroscopic perspective is generally taken by relating the observations of atomic radiation emitted or absorbed to the internal energy levels involved. X-ray spectra are then discussed in relation to the energy levels of the innermost electrons. Finally, a brief description is given of some modern, laser based, spectroscopic methods for the high resolution study of the nest details of atomic structure.
Publisher: Morgan & Claypool Publishers
ISBN: 164327404X
Category : Science
Languages : en
Pages : 101
Book Description
Atomic Physics provides a concise treatment of atomic physics and a basis to prepare for work in other disciplines that are underpinned by atomic physics such as chemistry, biology and several aspects of engineering science. The focus is mainly on atomic structure since this is what is primarily responsible for the physical properties of atoms. After a brief introduction to some basic concepts, the perturbation theory approach follows the hierarchy of interactions starting with the largest. The other interactions of spin, and angular momentum of the outermost electrons with each other, the nucleus and external magnetic fields are treated in order of descending strength. A spectroscopic perspective is generally taken by relating the observations of atomic radiation emitted or absorbed to the internal energy levels involved. X-ray spectra are then discussed in relation to the energy levels of the innermost electrons. Finally, a brief description is given of some modern, laser based, spectroscopic methods for the high resolution study of the nest details of atomic structure.
Quantum Mechanics of One- and Two-Electron Atoms
Author: Hans A. Bethe
Publisher: Springer Science & Business Media
ISBN: 3662128691
Category : Science
Languages : en
Pages : 375
Book Description
Nearly all of this book is taken from an article prepared for a volume of the Encyclopedia of Physics. This article, in turn, is partly based on Dr. Norbert Rosenzweig's translation of an older article on the same subject, written by one of us (H.A.B.) about 25 years ago for the Geiger-Scheel Handbuch der Physik. To the article written last year we have added some Addenda and Errata. These Addenda and Errata refer back to some of the 79 sections of the main text and contain some misprint corrections, additional references and some notes. The aim of this book is two-fold. First, to act as a reference work on calcu lations pertaining to hydrogen-like and helium-like atoms and their comparison with experiments. However, these calculations involve a vast array of approximation methods, mathematical tricks and physical pictures, which are also useful in the application of quantum mechanics to other fields. In many sections we have given more general discussions of the methods and physical ideas than is necessary for the study of the H- and He-atom alone. We hope that this book will thus at least partly fulfill its second aim, namely to be of some use to graduate students who wish to learn "applied quantum mechanics". A basic knowledge of the principles of quantum mechanics, such as given in the early chapters of Schiff's or Bohm's book, is presupposed.
Publisher: Springer Science & Business Media
ISBN: 3662128691
Category : Science
Languages : en
Pages : 375
Book Description
Nearly all of this book is taken from an article prepared for a volume of the Encyclopedia of Physics. This article, in turn, is partly based on Dr. Norbert Rosenzweig's translation of an older article on the same subject, written by one of us (H.A.B.) about 25 years ago for the Geiger-Scheel Handbuch der Physik. To the article written last year we have added some Addenda and Errata. These Addenda and Errata refer back to some of the 79 sections of the main text and contain some misprint corrections, additional references and some notes. The aim of this book is two-fold. First, to act as a reference work on calcu lations pertaining to hydrogen-like and helium-like atoms and their comparison with experiments. However, these calculations involve a vast array of approximation methods, mathematical tricks and physical pictures, which are also useful in the application of quantum mechanics to other fields. In many sections we have given more general discussions of the methods and physical ideas than is necessary for the study of the H- and He-atom alone. We hope that this book will thus at least partly fulfill its second aim, namely to be of some use to graduate students who wish to learn "applied quantum mechanics". A basic knowledge of the principles of quantum mechanics, such as given in the early chapters of Schiff's or Bohm's book, is presupposed.
The Fundamentals of Atomic and Molecular Physics
Author: Robert L Brooks
Publisher: Springer Science & Business Media
ISBN: 1461466784
Category : Science
Languages : en
Pages : 184
Book Description
The Fundamentals of Atomic and Molecular Physics is intended as an introduction to the field for advanced undergraduates who have taken quantum mechanics. Each chapter builds upon the previous, using the same tools and methods throughout. As the students progress through the book, their ability to use these tools will steadily increase, along with their confidence in their efficacy. The book treats the two-electron atom as the simplest example of the many-electron atom—as opposed to using techniques that are not applicable to many-electron atoms—so that it is unnecessary to develop additional equations when turning to multielectron atoms, such as carbon. External fields are treated using both perturbation theory and direct diagonalization and spontaneous emission is developed from first principles. Only diatomic molecules are considered with the hydrogen molecular ion and neutral molecule treated in some detail. This comprehensive coverage of the quantum mechanics of complex atoms and simple diatomic molecules, developed from the very basic components, is extremely useful for students considering graduate studies in any area of physics.
Publisher: Springer Science & Business Media
ISBN: 1461466784
Category : Science
Languages : en
Pages : 184
Book Description
The Fundamentals of Atomic and Molecular Physics is intended as an introduction to the field for advanced undergraduates who have taken quantum mechanics. Each chapter builds upon the previous, using the same tools and methods throughout. As the students progress through the book, their ability to use these tools will steadily increase, along with their confidence in their efficacy. The book treats the two-electron atom as the simplest example of the many-electron atom—as opposed to using techniques that are not applicable to many-electron atoms—so that it is unnecessary to develop additional equations when turning to multielectron atoms, such as carbon. External fields are treated using both perturbation theory and direct diagonalization and spontaneous emission is developed from first principles. Only diatomic molecules are considered with the hydrogen molecular ion and neutral molecule treated in some detail. This comprehensive coverage of the quantum mechanics of complex atoms and simple diatomic molecules, developed from the very basic components, is extremely useful for students considering graduate studies in any area of physics.
Magnetic Atoms and Molecules
Author: William Weltner
Publisher: Courier Corporation
ISBN: 9780486661407
Category : Science
Languages : en
Pages : 460
Book Description
This comprehensive graduate-level text by a leading researcher in atomic and molecular spectroscopy explores the electron-spin-resonance theory of randomly oriented molecules. "I recommend it highly." ? American Scientist. 119 illustrations.
Publisher: Courier Corporation
ISBN: 9780486661407
Category : Science
Languages : en
Pages : 460
Book Description
This comprehensive graduate-level text by a leading researcher in atomic and molecular spectroscopy explores the electron-spin-resonance theory of randomly oriented molecules. "I recommend it highly." ? American Scientist. 119 illustrations.
Modern Atomic and Nuclear Physics
Author: Fujia Yang
Publisher: World Scientific
ISBN: 9814277169
Category : Science
Languages : en
Pages : 812
Book Description
"The textbook itself is the culmination of the authors' many years of teaching and research in atomic physics, nuclear and particle physics, and modern physics. It is also a crystallization of their intense passion and strong interest in the history of physics and the philosophy of science. Together with the solution manual which presents solutions to many end-of-chapter problems in the textbook, they are a valuable resource to the instructors and students working in the modern atomic field."--Publisher's website.
Publisher: World Scientific
ISBN: 9814277169
Category : Science
Languages : en
Pages : 812
Book Description
"The textbook itself is the culmination of the authors' many years of teaching and research in atomic physics, nuclear and particle physics, and modern physics. It is also a crystallization of their intense passion and strong interest in the history of physics and the philosophy of science. Together with the solution manual which presents solutions to many end-of-chapter problems in the textbook, they are a valuable resource to the instructors and students working in the modern atomic field."--Publisher's website.
Atomic Spectra and Atomic Structure
Author: Gerhard Herzberg
Publisher: Courier Corporation
ISBN: 9780486601151
Category : Science
Languages : en
Pages : 292
Book Description
For beginners and specialists in other fields: the Nobel Laureate's introduction to atomic spectra and their relationship to atomic structures, stressing basics in a physical, rather than mathematical, treatment. 80 illustrations.
Publisher: Courier Corporation
ISBN: 9780486601151
Category : Science
Languages : en
Pages : 292
Book Description
For beginners and specialists in other fields: the Nobel Laureate's introduction to atomic spectra and their relationship to atomic structures, stressing basics in a physical, rather than mathematical, treatment. 80 illustrations.
Physics of Atoms and Ions
Author: Boris M. Smirnov
Publisher: Springer Science & Business Media
ISBN: 0387217304
Category : Science
Languages : en
Pages : 451
Book Description
Intended for advanced students of physics, chemistry and related disciplines, this text treats the quantum theory of atoms and ions within the framework of self-consistent fields. Data needed for the analysis of collisions and other atomic processes are also included.
Publisher: Springer Science & Business Media
ISBN: 0387217304
Category : Science
Languages : en
Pages : 451
Book Description
Intended for advanced students of physics, chemistry and related disciplines, this text treats the quantum theory of atoms and ions within the framework of self-consistent fields. Data needed for the analysis of collisions and other atomic processes are also included.
Collisions of Electrons with Atoms and Molecules
Author: G.F. Drukarev
Publisher: Springer Science & Business Media
ISBN: 1461317797
Category : Science
Languages : en
Pages : 252
Book Description
This book is a short outline of the present state of the theory of electron collisions with atomic particles - atoms, molecules and ions. It is addressed to those who by nature of their work need detailed information about the cross sections of various processes of electron collisions with atomic particles: experimentalists working in plasma physics, optics, quantum electronics, atmospheric and space physics, 'etc. Some of the cross sections have been measured. But in many important cases the only source of information is theoretical calcu lation. The numerous theoretical papers dealing with electronic collision processes contain various approximations. The inter relation between them and the level of their accuracy is often diffi cult to understand without a systematic study of the theory of atomic collisions, not to mention that theoretical considerations are necessary for the consistent interpretation of experimental results. The main constituents of the book are: 1. General theory with special emphasis on the topics most impor tant for understanding and discussing electron collisions with atomic particles.
Publisher: Springer Science & Business Media
ISBN: 1461317797
Category : Science
Languages : en
Pages : 252
Book Description
This book is a short outline of the present state of the theory of electron collisions with atomic particles - atoms, molecules and ions. It is addressed to those who by nature of their work need detailed information about the cross sections of various processes of electron collisions with atomic particles: experimentalists working in plasma physics, optics, quantum electronics, atmospheric and space physics, 'etc. Some of the cross sections have been measured. But in many important cases the only source of information is theoretical calcu lation. The numerous theoretical papers dealing with electronic collision processes contain various approximations. The inter relation between them and the level of their accuracy is often diffi cult to understand without a systematic study of the theory of atomic collisions, not to mention that theoretical considerations are necessary for the consistent interpretation of experimental results. The main constituents of the book are: 1. General theory with special emphasis on the topics most impor tant for understanding and discussing electron collisions with atomic particles.
Introduction to the Theory of Collisions of Electrons with Atoms and Molecules
Author: S.P. Khare
Publisher: Springer Science & Business Media
ISBN: 1461506115
Category : Science
Languages : en
Pages : 362
Book Description
An understanding of the collisions between micro particles is of great importance for the number of fields belonging to physics, chemistry, astrophysics, biophysics etc. The present book, a theory for electron-atom and molecule collisions is developed using non-relativistic quantum mechanics in a systematic and lucid manner. The scattering theory is an essential part of the quantum mechanics course of all universities. During the last 30 years, the author has lectured on the topics presented in this book (collisions physics, photon-atom collisions, electron-atom and electron-molecule collisions, "electron-photon delayed coincidence technique", etc.) at many institutions including Wayne State University, Detroit, MI, The University of Western Ontario, Canada, and The Meerut University, India. The present book is the outcome of those lectures and is written to serve as a textbook for post-graduate and pre-PhD students and as a reference book for researchers.
Publisher: Springer Science & Business Media
ISBN: 1461506115
Category : Science
Languages : en
Pages : 362
Book Description
An understanding of the collisions between micro particles is of great importance for the number of fields belonging to physics, chemistry, astrophysics, biophysics etc. The present book, a theory for electron-atom and molecule collisions is developed using non-relativistic quantum mechanics in a systematic and lucid manner. The scattering theory is an essential part of the quantum mechanics course of all universities. During the last 30 years, the author has lectured on the topics presented in this book (collisions physics, photon-atom collisions, electron-atom and electron-molecule collisions, "electron-photon delayed coincidence technique", etc.) at many institutions including Wayne State University, Detroit, MI, The University of Western Ontario, Canada, and The Meerut University, India. The present book is the outcome of those lectures and is written to serve as a textbook for post-graduate and pre-PhD students and as a reference book for researchers.