Statistical Estimation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Statistical Estimation PDF full book. Access full book title Statistical Estimation by I.A. Ibragimov. Download full books in PDF and EPUB format.

Statistical Estimation

Statistical Estimation PDF Author: I.A. Ibragimov
Publisher: Springer Science & Business Media
ISBN: 1489900276
Category : Mathematics
Languages : en
Pages : 410

Book Description
when certain parameters in the problem tend to limiting values (for example, when the sample size increases indefinitely, the intensity of the noise ap proaches zero, etc.) To address the problem of asymptotically optimal estimators consider the following important case. Let X 1, X 2, ... , X n be independent observations with the joint probability density !(x,O) (with respect to the Lebesgue measure on the real line) which depends on the unknown patameter o e 9 c R1. It is required to derive the best (asymptotically) estimator 0:( X b ... , X n) of the parameter O. The first question which arises in connection with this problem is how to compare different estimators or, equivalently, how to assess their quality, in terms of the mean square deviation from the parameter or perhaps in some other way. The presently accepted approach to this problem, resulting from A. Wald's contributions, is as follows: introduce a nonnegative function w(0l> ( ), Ob Oe 9 (the loss function) and given two estimators Of and O! n 2 2 the estimator for which the expected loss (risk) Eown(Oj, 0), j = 1 or 2, is smallest is called the better with respect to Wn at point 0 (here EoO is the expectation evaluated under the assumption that the true value of the parameter is 0). Obviously, such a method of comparison is not without its defects.

Statistical Estimation

Statistical Estimation PDF Author: I.A. Ibragimov
Publisher: Springer Science & Business Media
ISBN: 1489900276
Category : Mathematics
Languages : en
Pages : 410

Book Description
when certain parameters in the problem tend to limiting values (for example, when the sample size increases indefinitely, the intensity of the noise ap proaches zero, etc.) To address the problem of asymptotically optimal estimators consider the following important case. Let X 1, X 2, ... , X n be independent observations with the joint probability density !(x,O) (with respect to the Lebesgue measure on the real line) which depends on the unknown patameter o e 9 c R1. It is required to derive the best (asymptotically) estimator 0:( X b ... , X n) of the parameter O. The first question which arises in connection with this problem is how to compare different estimators or, equivalently, how to assess their quality, in terms of the mean square deviation from the parameter or perhaps in some other way. The presently accepted approach to this problem, resulting from A. Wald's contributions, is as follows: introduce a nonnegative function w(0l> ( ), Ob Oe 9 (the loss function) and given two estimators Of and O! n 2 2 the estimator for which the expected loss (risk) Eown(Oj, 0), j = 1 or 2, is smallest is called the better with respect to Wn at point 0 (here EoO is the expectation evaluated under the assumption that the true value of the parameter is 0). Obviously, such a method of comparison is not without its defects.

Asymptotic Theory of Statistical Inference for Time Series

Asymptotic Theory of Statistical Inference for Time Series PDF Author: Masanobu Taniguchi
Publisher: Springer
ISBN: 9781461270287
Category : Mathematics
Languages : en
Pages : 0

Book Description
The primary aim of this book is to provide modern statistical techniques and theory for stochastic processes. The stochastic processes mentioned here are not restricted to the usual AR, MA, and ARMA processes. A wide variety of stochastic processes, including non-Gaussian linear processes, long-memory processes, nonlinear processes, non-ergodic processes and diffusion processes are described. The authors discuss estimation and testing theory and many other relevant statistical methods and techniques.

Asymptotic Statistics

Asymptotic Statistics PDF Author: A. W. van der Vaart
Publisher: Cambridge University Press
ISBN: 9780521784504
Category : Mathematics
Languages : en
Pages : 470

Book Description
This book is an introduction to the field of asymptotic statistics. The treatment is both practical and mathematically rigorous. In addition to most of the standard topics of an asymptotics course, including likelihood inference, M-estimation, the theory of asymptotic efficiency, U-statistics, and rank procedures, the book also presents recent research topics such as semiparametric models, the bootstrap, and empirical processes and their applications. The topics are organized from the central idea of approximation by limit experiments, which gives the book one of its unifying themes. This entails mainly the local approximation of the classical i.i.d. set up with smooth parameters by location experiments involving a single, normally distributed observation. Thus, even the standard subjects of asymptotic statistics are presented in a novel way. Suitable as a graduate or Master s level statistics text, this book will also give researchers an overview of the latest research in asymptotic statistics.

Asymptotic Theory of Statistical Inference

Asymptotic Theory of Statistical Inference PDF Author: B. L. S. Prakasa Rao
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 458

Book Description
Probability and stochastic processes; Limit theorems for some statistics; Asymptotic theory of estimation; Linear parametric inference; Martingale approach to inference; Inference in nonlinear regression; Von mises functionals; Empirical characteristic function and its applications.

Asymptotic Theory Of Quantum Statistical Inference: Selected Papers

Asymptotic Theory Of Quantum Statistical Inference: Selected Papers PDF Author: Masahito Hayashi
Publisher: World Scientific
ISBN: 981448198X
Category : Science
Languages : en
Pages : 553

Book Description
Quantum statistical inference, a research field with deep roots in the foundations of both quantum physics and mathematical statistics, has made remarkable progress since 1990. In particular, its asymptotic theory has been developed during this period. However, there has hitherto been no book covering this remarkable progress after 1990; the famous textbooks by Holevo and Helstrom deal only with research results in the earlier stage (1960s-1970s).This book presents the important and recent results of quantum statistical inference. It focuses on the asymptotic theory, which is one of the central issues of mathematical statistics and had not been investigated in quantum statistical inference until the early 1980s. It contains outstanding papers after Holevo's textbook, some of which are of great importance but are not available now.The reader is expected to have only elementary mathematical knowledge, and therefore much of the content will be accessible to graduate students as well as research workers in related fields. Introductions to quantum statistical inference have been specially written for the book. Asymptotic Theory of Quantum Statistical Inference: Selected Papers will give the reader a new insight into physics and statistical inference.

Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency

Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency PDF Author: Masafumi Akahira
Publisher: Springer Science & Business Media
ISBN: 1461259274
Category : Mathematics
Languages : en
Pages : 253

Book Description
This monograph is a collection of results recently obtained by the authors. Most of these have been published, while others are awaitlng publication. Our investigation has two main purposes. Firstly, we discuss higher order asymptotic efficiency of estimators in regular situa tions. In these situations it is known that the maximum likelihood estimator (MLE) is asymptotically efficient in some (not always specified) sense. However, there exists here a whole class of asymptotically efficient estimators which are thus asymptotically equivalent to the MLE. It is required to make finer distinctions among the estimators, by considering higher order terms in the expansions of their asymptotic distributions. Secondly, we discuss asymptotically efficient estimators in non regular situations. These are situations where the MLE or other estimators are not asymptotically normally distributed, or where l 2 their order of convergence (or consistency) is not n / , as in the regular cases. It is necessary to redefine the concept of asympto tic efficiency, together with the concept of the maximum order of consistency. Under the new definition as asymptotically efficient estimator may not always exist. We have not attempted to tell the whole story in a systematic way. The field of asymptotic theory in statistical estimation is relatively uncultivated. So, we have tried to focus attention on such aspects of our recent results which throw light on the area.

Asymptotic Theory for Econometricians

Asymptotic Theory for Econometricians PDF Author: Halbert White
Publisher: Academic Press
ISBN: 1483294420
Category : Business & Economics
Languages : en
Pages : 241

Book Description
This book is intended to provide a somewhat more comprehensive and unified treatment of large sample theory than has been available previously and to relate the fundamental tools of asymptotic theory directly to many of the estimators of interest to econometricians. In addition, because economic data are generated in a variety of different contexts (time series, cross sections, time series--cross sections), we pay particular attention to the similarities and differences in the techniques appropriate to each of these contexts.

Robust Asymptotic Statistics

Robust Asymptotic Statistics PDF Author: Helmut Rieder
Publisher: Springer Science & Business Media
ISBN: 1468406248
Category : Mathematics
Languages : en
Pages : 409

Book Description
1 To the king, my lord, from your servant Balasi : 2 ... The king should have a look. Maybe the scribe who reads to the king did not understand . . . . shall I personally show, with this tablet that I am sending to the king, my lord, how the omen was written. 3 Really, he who has not followed the text with his finger cannot possibly understand it. This book is about optimally robust functionals and their unbiased esti mators and tests. Functionals extend the parameter of the assumed ideal center model to neighborhoods of this model that contain the actual distri bution. The two principal questions are (F): Which functional to choose? and (P): Which statistical procedure to use for the selected functional? Using a local asymptotic framework, we deal with both problems by linking up nonparametric statistical optimality with infinitesimal robust ness criteria. Thus, seemingly separate developments in robust statistics are presented in a unifying way.

A Course in Large Sample Theory

A Course in Large Sample Theory PDF Author: Thomas S. Ferguson
Publisher: Routledge
ISBN: 1351470051
Category : Mathematics
Languages : en
Pages : 192

Book Description
A Course in Large Sample Theory is presented in four parts. The first treats basic probabilistic notions, the second features the basic statistical tools for expanding the theory, the third contains special topics as applications of the general theory, and the fourth covers more standard statistical topics. Nearly all topics are covered in their multivariate setting.The book is intended as a first year graduate course in large sample theory for statisticians. It has been used by graduate students in statistics, biostatistics, mathematics, and related fields. Throughout the book there are many examples and exercises with solutions. It is an ideal text for self study.

Asymptotic Theory of Statistics and Probability

Asymptotic Theory of Statistics and Probability PDF Author: Anirban DasGupta
Publisher: Springer Science & Business Media
ISBN: 0387759700
Category : Mathematics
Languages : en
Pages : 726

Book Description
This unique book delivers an encyclopedic treatment of classic as well as contemporary large sample theory, dealing with both statistical problems and probabilistic issues and tools. The book is unique in its detailed coverage of fundamental topics. It is written in an extremely lucid style, with an emphasis on the conceptual discussion of the importance of a problem and the impact and relevance of the theorems. There is no other book in large sample theory that matches this book in coverage, exercises and examples, bibliography, and lucid conceptual discussion of issues and theorems.