Author: Bong Wie
Publisher: AIAA
ISBN: 9781563472619
Category : Mathematics
Languages : en
Pages : 692
Book Description
A textbook that incorporates the latest methods used for the analysis of spacecraft orbital, attitude, and structural dynamics and control. Spacecraft dynamics is treated as a dynamic system with emphasis on practical applications, typical examples of which are the analysis and redesign of the pointing control system of the Hubble Space Telescope and the analysis of an active vibrations control for the COFS (Control of Flexible Structures) Mast Flight System. In addition to the three subjects mentioned above, dynamic systems modeling, analysis, and control are also discussed. Annotation copyrighted by Book News, Inc., Portland, OR
Space Vehicle Dynamics and Control
Author: Bong Wie
Publisher: AIAA
ISBN: 9781563472619
Category : Mathematics
Languages : en
Pages : 692
Book Description
A textbook that incorporates the latest methods used for the analysis of spacecraft orbital, attitude, and structural dynamics and control. Spacecraft dynamics is treated as a dynamic system with emphasis on practical applications, typical examples of which are the analysis and redesign of the pointing control system of the Hubble Space Telescope and the analysis of an active vibrations control for the COFS (Control of Flexible Structures) Mast Flight System. In addition to the three subjects mentioned above, dynamic systems modeling, analysis, and control are also discussed. Annotation copyrighted by Book News, Inc., Portland, OR
Publisher: AIAA
ISBN: 9781563472619
Category : Mathematics
Languages : en
Pages : 692
Book Description
A textbook that incorporates the latest methods used for the analysis of spacecraft orbital, attitude, and structural dynamics and control. Spacecraft dynamics is treated as a dynamic system with emphasis on practical applications, typical examples of which are the analysis and redesign of the pointing control system of the Hubble Space Telescope and the analysis of an active vibrations control for the COFS (Control of Flexible Structures) Mast Flight System. In addition to the three subjects mentioned above, dynamic systems modeling, analysis, and control are also discussed. Annotation copyrighted by Book News, Inc., Portland, OR
Practical Astrodynamics
Author: Alessandro de Iaco Veris
Publisher: Springer
ISBN: 331962220X
Category : Technology & Engineering
Languages : en
Pages : 1320
Book Description
This modern textbook guides the reader through the theory and practice of the motion and attitude control of space vehicles. It first presents the fundamental principles of spaceflight mechanics and then addresses more complex concepts and applications of perturbation theory, orbit determination and refinement, space propulsion, orbital maneuvers, interplanetary trajectories, gyroscope dynamics, attitude control, and rocket performance. Many algorithms used in the modern practice of trajectory computation are also provided. The numerical treatment of the equations of motion, the related methods, and the tables needed to use them receive particular emphasis. A large collection of bibliographical references (including books, articles, and items from the "gray literature") is provided at the end of each chapter, and attention is drawn to many internet resources available to the reader. The book will be of particular value to undergraduate and graduate students in aerospace engineering.
Publisher: Springer
ISBN: 331962220X
Category : Technology & Engineering
Languages : en
Pages : 1320
Book Description
This modern textbook guides the reader through the theory and practice of the motion and attitude control of space vehicles. It first presents the fundamental principles of spaceflight mechanics and then addresses more complex concepts and applications of perturbation theory, orbit determination and refinement, space propulsion, orbital maneuvers, interplanetary trajectories, gyroscope dynamics, attitude control, and rocket performance. Many algorithms used in the modern practice of trajectory computation are also provided. The numerical treatment of the equations of motion, the related methods, and the tables needed to use them receive particular emphasis. A large collection of bibliographical references (including books, articles, and items from the "gray literature") is provided at the end of each chapter, and attention is drawn to many internet resources available to the reader. The book will be of particular value to undergraduate and graduate students in aerospace engineering.
An Introduction to the Mathematics and Methods of Astrodynamics
Author: Richard H. Battin
Publisher: AIAA
ISBN: 9781600860263
Category : Astrodynamics
Languages : en
Pages : 840
Book Description
Publisher: AIAA
ISBN: 9781600860263
Category : Astrodynamics
Languages : en
Pages : 840
Book Description
Celestial Mechanics and Astrodynamics
Author: Victor Szebehely
Publisher: Elsevier
ISBN: 0323163394
Category : Science
Languages : en
Pages : 765
Book Description
Celestial Mechanics and Astrodynamics
Publisher: Elsevier
ISBN: 0323163394
Category : Science
Languages : en
Pages : 765
Book Description
Celestial Mechanics and Astrodynamics
Fundamentals of Aerospace Navigation and Guidance
Author: Pierre T. Kabamba
Publisher: Cambridge University Press
ISBN: 1107070945
Category : Mathematics
Languages : en
Pages : 333
Book Description
This text covers fundamentals in navigation of modern aerospace vehicles. It is an excellent resource for both graduate students and practicing engineers.
Publisher: Cambridge University Press
ISBN: 1107070945
Category : Mathematics
Languages : en
Pages : 333
Book Description
This text covers fundamentals in navigation of modern aerospace vehicles. It is an excellent resource for both graduate students and practicing engineers.
Spacecraft Dynamics and Control
Author: Marcel J. Sidi
Publisher: Cambridge University Press
ISBN: 1139936131
Category : Technology & Engineering
Languages : en
Pages : 434
Book Description
Satellites are used increasingly in telecommunications, scientific research, surveillance, and meteorology, and these satellites rely heavily on the effectiveness of complex onboard control systems. This 1997 book explains the basic theory of spacecraft dynamics and control and the practical aspects of controlling a satellite. The emphasis throughout is on analyzing and solving real-world engineering problems. For example, the author discusses orbital and rotational dynamics of spacecraft under a variety of environmental conditions, along with the realistic constraints imposed by available hardware. Among the topics covered are orbital dynamics, attitude dynamics, gravity gradient stabilization, single and dual spin stabilization, attitude maneuvers, attitude stabilization, and structural dynamics and liquid sloshing.
Publisher: Cambridge University Press
ISBN: 1139936131
Category : Technology & Engineering
Languages : en
Pages : 434
Book Description
Satellites are used increasingly in telecommunications, scientific research, surveillance, and meteorology, and these satellites rely heavily on the effectiveness of complex onboard control systems. This 1997 book explains the basic theory of spacecraft dynamics and control and the practical aspects of controlling a satellite. The emphasis throughout is on analyzing and solving real-world engineering problems. For example, the author discusses orbital and rotational dynamics of spacecraft under a variety of environmental conditions, along with the realistic constraints imposed by available hardware. Among the topics covered are orbital dynamics, attitude dynamics, gravity gradient stabilization, single and dual spin stabilization, attitude maneuvers, attitude stabilization, and structural dynamics and liquid sloshing.
Spacecraft Formation Flying
Author: Kyle Alfriend
Publisher: Elsevier
ISBN: 0080559654
Category : Technology & Engineering
Languages : en
Pages : 403
Book Description
Space agencies are now realizing that much of what has previously been achieved using hugely complex and costly single platform projects—large unmanned and manned satellites (including the present International Space Station)—can be replaced by a number of smaller satellites networked together. The key challenge of this approach, namely ensuring the proper formation flying of multiple craft, is the topic of this second volume in Elsevier's Astrodynamics Series, Spacecraft Formation Flying: Dynamics, control and navigation. In this unique text, authors Alfriend et al. provide a coherent discussion of spacecraft relative motion, both in the unperturbed and perturbed settings, explain the main control approaches for regulating relative satellite dynamics, using both impulsive and continuous maneuvers, and present the main constituents required for relative navigation. The early chapters provide a foundation upon which later discussions are built, making this a complete, standalone offering. Intended for graduate students, professors and academic researchers in the fields of aerospace and mechanical engineering, mathematics, astronomy and astrophysics, Spacecraft Formation Flying is a technical yet accessible, forward-thinking guide to this critical area of astrodynamics. - The first book dedicated to spacecraft formation flying, written by leading researchers and professors in the field - Develops the theory from an astrodynamical viewpoint, emphasizing modeling, control and navigation of formation flying satellites on Earth orbits - Examples used to illustrate the main developments, with a sample simulation of a formation flying mission included to illustrate high fidelity modeling, control and relative navigation
Publisher: Elsevier
ISBN: 0080559654
Category : Technology & Engineering
Languages : en
Pages : 403
Book Description
Space agencies are now realizing that much of what has previously been achieved using hugely complex and costly single platform projects—large unmanned and manned satellites (including the present International Space Station)—can be replaced by a number of smaller satellites networked together. The key challenge of this approach, namely ensuring the proper formation flying of multiple craft, is the topic of this second volume in Elsevier's Astrodynamics Series, Spacecraft Formation Flying: Dynamics, control and navigation. In this unique text, authors Alfriend et al. provide a coherent discussion of spacecraft relative motion, both in the unperturbed and perturbed settings, explain the main control approaches for regulating relative satellite dynamics, using both impulsive and continuous maneuvers, and present the main constituents required for relative navigation. The early chapters provide a foundation upon which later discussions are built, making this a complete, standalone offering. Intended for graduate students, professors and academic researchers in the fields of aerospace and mechanical engineering, mathematics, astronomy and astrophysics, Spacecraft Formation Flying is a technical yet accessible, forward-thinking guide to this critical area of astrodynamics. - The first book dedicated to spacecraft formation flying, written by leading researchers and professors in the field - Develops the theory from an astrodynamical viewpoint, emphasizing modeling, control and navigation of formation flying satellites on Earth orbits - Examples used to illustrate the main developments, with a sample simulation of a formation flying mission included to illustrate high fidelity modeling, control and relative navigation
Orbital Relative Motion and Terminal Rendezvous
Author: Jean Albert Kéchichian
Publisher: Springer Nature
ISBN: 3030646572
Category : Technology & Engineering
Languages : en
Pages : 417
Book Description
This book provides a comprehensive analysis of time-fixed terminal rendezvous around the Earth using chemical propulsion. The book has two main objectives. The first is to derive the mathematics of relative motion in near-circular orbit when subjected to perturbations emanating from the oblateness of the Earth, third-body gravity, and atmospheric drag. The mathematics are suitable for quick trajectory prediction and the creation of computer codes and efficient software to solve impulsive maneuvers and fly rendezvous missions. The second objective of this book is to show how the relative motion theory is applied to the exact precision-integrated, long-duration, time-fixed terminal rendezvous problem around the oblate Earth for the general elliptic orbit case. The contents are both theoretical and applied, with long-lasting value for aerospace engineers, trajectory designers, professors of orbital mechanics, and students at the graduate level and above.
Publisher: Springer Nature
ISBN: 3030646572
Category : Technology & Engineering
Languages : en
Pages : 417
Book Description
This book provides a comprehensive analysis of time-fixed terminal rendezvous around the Earth using chemical propulsion. The book has two main objectives. The first is to derive the mathematics of relative motion in near-circular orbit when subjected to perturbations emanating from the oblateness of the Earth, third-body gravity, and atmospheric drag. The mathematics are suitable for quick trajectory prediction and the creation of computer codes and efficient software to solve impulsive maneuvers and fly rendezvous missions. The second objective of this book is to show how the relative motion theory is applied to the exact precision-integrated, long-duration, time-fixed terminal rendezvous problem around the oblate Earth for the general elliptic orbit case. The contents are both theoretical and applied, with long-lasting value for aerospace engineers, trajectory designers, professors of orbital mechanics, and students at the graduate level and above.
Spacecraft Trajectory Optimization
Author: Bruce A. Conway
Publisher: Cambridge University Press
ISBN: 113949077X
Category : Technology & Engineering
Languages : en
Pages : 313
Book Description
This is a long-overdue volume dedicated to space trajectory optimization. Interest in the subject has grown, as space missions of increasing levels of sophistication, complexity, and scientific return - hardly imaginable in the 1960s - have been designed and flown. Although the basic tools of optimization theory remain an accepted canon, there has been a revolution in the manner in which they are applied and in the development of numerical optimization. This volume purposely includes a variety of both analytical and numerical approaches to trajectory optimization. The choice of authors has been guided by the editor's intention to assemble the most expert and active researchers in the various specialities presented. The authors were given considerable freedom to choose their subjects, and although this may yield a somewhat eclectic volume, it also yields chapters written with palpable enthusiasm and relevance to contemporary problems.
Publisher: Cambridge University Press
ISBN: 113949077X
Category : Technology & Engineering
Languages : en
Pages : 313
Book Description
This is a long-overdue volume dedicated to space trajectory optimization. Interest in the subject has grown, as space missions of increasing levels of sophistication, complexity, and scientific return - hardly imaginable in the 1960s - have been designed and flown. Although the basic tools of optimization theory remain an accepted canon, there has been a revolution in the manner in which they are applied and in the development of numerical optimization. This volume purposely includes a variety of both analytical and numerical approaches to trajectory optimization. The choice of authors has been guided by the editor's intention to assemble the most expert and active researchers in the various specialities presented. The authors were given considerable freedom to choose their subjects, and although this may yield a somewhat eclectic volume, it also yields chapters written with palpable enthusiasm and relevance to contemporary problems.
Fundamentals of Spacecraft Attitude Determination and Control
Author: F. Landis Markley
Publisher: Springer
ISBN: 1493908022
Category : Technology & Engineering
Languages : en
Pages : 501
Book Description
This book explores topics that are central to the field of spacecraft attitude determination and control. The authors provide rigorous theoretical derivations of significant algorithms accompanied by a generous amount of qualitative discussions of the subject matter. The book documents the development of the important concepts and methods in a manner accessible to practicing engineers, graduate-level engineering students and applied mathematicians. It includes detailed examples from actual mission designs to help ease the transition from theory to practice and also provides prototype algorithms that are readily available on the author’s website. Subject matter includes both theoretical derivations and practical implementation of spacecraft attitude determination and control systems. It provides detailed derivations for attitude kinematics and dynamics and provides detailed description of the most widely used attitude parameterization, the quaternion. This title also provides a thorough treatise of attitude dynamics including Jacobian elliptical functions. It is the first known book to provide detailed derivations and explanations of state attitude determination and gives readers real-world examples from actual working spacecraft missions. The subject matter is chosen to fill the void of existing textbooks and treatises, especially in state and dynamics attitude determination. MATLAB code of all examples will be provided through an external website.
Publisher: Springer
ISBN: 1493908022
Category : Technology & Engineering
Languages : en
Pages : 501
Book Description
This book explores topics that are central to the field of spacecraft attitude determination and control. The authors provide rigorous theoretical derivations of significant algorithms accompanied by a generous amount of qualitative discussions of the subject matter. The book documents the development of the important concepts and methods in a manner accessible to practicing engineers, graduate-level engineering students and applied mathematicians. It includes detailed examples from actual mission designs to help ease the transition from theory to practice and also provides prototype algorithms that are readily available on the author’s website. Subject matter includes both theoretical derivations and practical implementation of spacecraft attitude determination and control systems. It provides detailed derivations for attitude kinematics and dynamics and provides detailed description of the most widely used attitude parameterization, the quaternion. This title also provides a thorough treatise of attitude dynamics including Jacobian elliptical functions. It is the first known book to provide detailed derivations and explanations of state attitude determination and gives readers real-world examples from actual working spacecraft missions. The subject matter is chosen to fill the void of existing textbooks and treatises, especially in state and dynamics attitude determination. MATLAB code of all examples will be provided through an external website.