Assessment of Personal Exposure to Air Pollution Based on Trajectory Data PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Assessment of Personal Exposure to Air Pollution Based on Trajectory Data PDF full book. Access full book title Assessment of Personal Exposure to Air Pollution Based on Trajectory Data by Guixing Wei. Download full books in PDF and EPUB format.

Assessment of Personal Exposure to Air Pollution Based on Trajectory Data

Assessment of Personal Exposure to Air Pollution Based on Trajectory Data PDF Author: Guixing Wei
Publisher:
ISBN:
Category : Air
Languages : en
Pages : 198

Book Description
Air pollution has been among the biggest environmental risks to human health. Exposure assessment to air pollution is essentially a procedure to quantify the degree to which people get exposed to hazardous air pollution. Exposure assessment is also a critical step in health-related studies exploring the relationship between personal exposure to environmental stressors and adverse health outcomes. Given the critical role of exposure assessment, it is important to accurately quantify and characterize personal exposure in geographic space and time. For years numerous exposure assessment methods have been developed with respect to a wide spectrum of air pollutants. Of all the methods, the most commonly used one is to use a representative geographic unit as the surrogate location to estimate the potential impact from hazardous air pollution from differing sources on that location. The representative unit is one person's home location in most cases. Such studies, however, have failed to recognize the significance of both the dynamics of human activities and the variation of air pollution in geographic space and time. It is believed that personal exposure is essentially a function of space and time as an individual's time-activity patterns and intensities of air pollutant in question vary over space and time. It is therefore imperative to account for the spatiotemporal dynamics of both in exposure assessment. To this end, the goal of this study is to account for the spatiotemporal dynamics of both human time-activity patterns and air pollution for assessing personal exposure. More specifically this dissertation aims to achieve three objectives as summarized below. First, in light of the deficiency of existing home-based exposure assessment methods, this study proposes an innovative trajectory-based model for assessing personal exposure to ambient air pollution. This model provides a computational framework for assessing personal exposure when trajectories, documenting human spatiotemporal activities, are modeled into a series of tours, microenvironments (MEs), and visits. A set of individual-level trajectories was simulated to test the performance of the proposed model, in conjunction with one-day air pollution (PM2.5) data in Beijing, China. The results from the test demonstrated that the trajectory-based model is capable of capturing the spatiotemporal variation of personal exposure, thus providing more accurate, detailed and enriched information to better understand personal exposure. The findings indicate that there is considerable variation in intra-microenvironment and inter-microenvironment exposure, which identified the importance of distinguishing between different MEs. Moreover, this study tested the proposed model using an empirical dataset. Second, little is known about the difference between the estimated exposure based on home locations only and that considering the locations of all human activities. To fill this gap, this study aims to test whether the exposure calculated from the home-based method is statistically significantly different from the exposure estimated by the newly developed trajectory-based model. A Dataset containing 4,000 individual-level one-day trajectories (Dataset 1) was simulated to test the aforementioned hypothesis. The exposure estimates in comparison are the average hourly exposure over a 24-hour period from two exposure assessment methods. The 4,000 trajectories were split into another two subsets (Datasets 2, 3) according to the difference between home-based exposure estimates and trajectory-based exposure estimates. The Wilcoxon Signed-rank test was used to evaluate whether the difference between the two models is significant. The results show that the statistically significant difference was found only in Dataset 3. The same test was also applied to a set of empirical trajectories. The significant difference exists in the results from the empirical data. The mixed results suggest that additional research is needed to verify the difference between the two exposure assessment methods. Third, little research has taken into consideration of hourly traffic variation and human activities simultaneously in a model for assessing personal exposure to traffic emissions. To fill this gap, this study develops a new trajectory-based model to quantify personal exposure to traffic emissions. The hourly share of daily traffic volume of each roadway in the study area was estimated by calculating the traffic allocation factors (TAFs) of each roadway. Next, the hourly traffic emission surfaces were built using the hourly shares and a kernel density algorithm. A 3-D cube representing the spatiotemporal distribution of traffic emission was constructed, which overlaid the simulated individual-level trajectory data for assessing personal exposure to traffic emissions. The results showed that people's time-activity patterns (e.g., where an individual lives/works, where an individual travels) were significant factors in exposure assessment. This study suggests that people's time activities and hourly variation of traffic emission should be simultaneously addressed when assessing personal exposure to traffic emissions. To sum up, this study has devoted a large effort in quantifying and characterizing personal exposure in geographic space and time. A few of contributions to the knowledge of exposure science are listed as follows. First, this study contributes two exposure assessment models in characterizing personal spatiotemporal exposure using trajectory data. One is developed for assessing personal exposure to ambient air pollution, and the other one is for assessing personal exposure to traffic emissions. Second, this study demonstrates the intra- and inter-microenvironment variation of personal exposure and reveals the significance of people's time-activity patterns in exposure assessment. Third, this study investigates the difference in exposure estimates between conventional home-based methods considering home locations only and trajectory-based methods accounting for the locations of all activities. The mixed findings from Wilcoxon Signed-rank tests suggest more research is needed to explore how personal exposure varies with time-activity patterns. All these contributions will have important implications in exposure science, environment science, and epidemiology.

Assessment of Personal Exposure to Air Pollution Based on Trajectory Data

Assessment of Personal Exposure to Air Pollution Based on Trajectory Data PDF Author: Guixing Wei
Publisher:
ISBN:
Category : Air
Languages : en
Pages : 198

Book Description
Air pollution has been among the biggest environmental risks to human health. Exposure assessment to air pollution is essentially a procedure to quantify the degree to which people get exposed to hazardous air pollution. Exposure assessment is also a critical step in health-related studies exploring the relationship between personal exposure to environmental stressors and adverse health outcomes. Given the critical role of exposure assessment, it is important to accurately quantify and characterize personal exposure in geographic space and time. For years numerous exposure assessment methods have been developed with respect to a wide spectrum of air pollutants. Of all the methods, the most commonly used one is to use a representative geographic unit as the surrogate location to estimate the potential impact from hazardous air pollution from differing sources on that location. The representative unit is one person's home location in most cases. Such studies, however, have failed to recognize the significance of both the dynamics of human activities and the variation of air pollution in geographic space and time. It is believed that personal exposure is essentially a function of space and time as an individual's time-activity patterns and intensities of air pollutant in question vary over space and time. It is therefore imperative to account for the spatiotemporal dynamics of both in exposure assessment. To this end, the goal of this study is to account for the spatiotemporal dynamics of both human time-activity patterns and air pollution for assessing personal exposure. More specifically this dissertation aims to achieve three objectives as summarized below. First, in light of the deficiency of existing home-based exposure assessment methods, this study proposes an innovative trajectory-based model for assessing personal exposure to ambient air pollution. This model provides a computational framework for assessing personal exposure when trajectories, documenting human spatiotemporal activities, are modeled into a series of tours, microenvironments (MEs), and visits. A set of individual-level trajectories was simulated to test the performance of the proposed model, in conjunction with one-day air pollution (PM2.5) data in Beijing, China. The results from the test demonstrated that the trajectory-based model is capable of capturing the spatiotemporal variation of personal exposure, thus providing more accurate, detailed and enriched information to better understand personal exposure. The findings indicate that there is considerable variation in intra-microenvironment and inter-microenvironment exposure, which identified the importance of distinguishing between different MEs. Moreover, this study tested the proposed model using an empirical dataset. Second, little is known about the difference between the estimated exposure based on home locations only and that considering the locations of all human activities. To fill this gap, this study aims to test whether the exposure calculated from the home-based method is statistically significantly different from the exposure estimated by the newly developed trajectory-based model. A Dataset containing 4,000 individual-level one-day trajectories (Dataset 1) was simulated to test the aforementioned hypothesis. The exposure estimates in comparison are the average hourly exposure over a 24-hour period from two exposure assessment methods. The 4,000 trajectories were split into another two subsets (Datasets 2, 3) according to the difference between home-based exposure estimates and trajectory-based exposure estimates. The Wilcoxon Signed-rank test was used to evaluate whether the difference between the two models is significant. The results show that the statistically significant difference was found only in Dataset 3. The same test was also applied to a set of empirical trajectories. The significant difference exists in the results from the empirical data. The mixed results suggest that additional research is needed to verify the difference between the two exposure assessment methods. Third, little research has taken into consideration of hourly traffic variation and human activities simultaneously in a model for assessing personal exposure to traffic emissions. To fill this gap, this study develops a new trajectory-based model to quantify personal exposure to traffic emissions. The hourly share of daily traffic volume of each roadway in the study area was estimated by calculating the traffic allocation factors (TAFs) of each roadway. Next, the hourly traffic emission surfaces were built using the hourly shares and a kernel density algorithm. A 3-D cube representing the spatiotemporal distribution of traffic emission was constructed, which overlaid the simulated individual-level trajectory data for assessing personal exposure to traffic emissions. The results showed that people's time-activity patterns (e.g., where an individual lives/works, where an individual travels) were significant factors in exposure assessment. This study suggests that people's time activities and hourly variation of traffic emission should be simultaneously addressed when assessing personal exposure to traffic emissions. To sum up, this study has devoted a large effort in quantifying and characterizing personal exposure in geographic space and time. A few of contributions to the knowledge of exposure science are listed as follows. First, this study contributes two exposure assessment models in characterizing personal spatiotemporal exposure using trajectory data. One is developed for assessing personal exposure to ambient air pollution, and the other one is for assessing personal exposure to traffic emissions. Second, this study demonstrates the intra- and inter-microenvironment variation of personal exposure and reveals the significance of people's time-activity patterns in exposure assessment. Third, this study investigates the difference in exposure estimates between conventional home-based methods considering home locations only and trajectory-based methods accounting for the locations of all activities. The mixed findings from Wilcoxon Signed-rank tests suggest more research is needed to explore how personal exposure varies with time-activity patterns. All these contributions will have important implications in exposure science, environment science, and epidemiology.

Human Exposure Assessment for Airborne Pollutants

Human Exposure Assessment for Airborne Pollutants PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309042844
Category : Science
Languages : en
Pages : 338

Book Description
Most people in the United States spend far more time indoors than outdoors. Yet, many air pollution regulations and risk assessments focus on outdoor air. These often overlook contact with harmful contaminants that may be at their most dangerous concentrations indoors. A new book from the National Research Council explores the need for strategies to address indoor and outdoor exposures and examines the methods and tools available for finding out where and when significant exposures occur. The volume includes: A conceptual framework and common terminology that investigators from different disciplines can use to make more accurate assessments of human exposure to airborne contaminants. An update of important developments in assessing exposure to airborne contaminants: ambient air sampling and physical chemical measurements, biological markers, questionnaires, time-activity diaries, and modeling. A series of examples of how exposure assessments have been applied-properly and improperly-to public health issues and how the committee's suggested framework can be brought into practice. This volume will provide important insights to improve risk assessment, risk management, pollution control, and regulatory programs.

Development and Application of Individual and Population-level Human Exposure Models for Fine Particles and Other Vehicle-related Air Pollutants in Southern California

Development and Application of Individual and Population-level Human Exposure Models for Fine Particles and Other Vehicle-related Air Pollutants in Southern California PDF Author: Jun Wu
Publisher:
ISBN:
Category :
Languages : en
Pages : 396

Book Description


Assessment of Individual-level Exposure to Air Pollutants Using Personal Monitoring

Assessment of Individual-level Exposure to Air Pollutants Using Personal Monitoring PDF Author: Rok Novak (ekotehnolog.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description


Exposure Information in Environmental Health Research

Exposure Information in Environmental Health Research PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Understanding and quantifying outdoor and indoor sources of human exposure are essential but often not adequately addressed in health-effects studies for air pollution. Air pollution epidemiology, risk assessment, health tracking and accountability assessments are examples of health-effects studies that require but often lack adequate exposure information. Recent advances in exposure modeling along with better information on time-activity and exposure factors data provide us with unique opportunities to improve the assignment of exposures for both future and ongoing studies linking air pollution to health impacts. In September 2006, scientists from the US Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC) along with scientists from the academic community and state health departments convened a symposium on air pollution exposure and health in order to identify, evaluate, and improve current approaches for linking air pollution exposures to disease. This manuscript presents the key issues, challenges and recommendations identified by the exposure working group, who used cases studies of particulate matter, ozone, and toxic air pollutant exposure to evaluate health-effects for air pollution. One of the over-arching lessons of this workshop is that obtaining better exposure information for these different health-effects studies requires both goal-setting for what is needed and mapping out the transition pathway from current capabilities to meeting these goals. Meeting our long-term goals requires definition of incremental steps that provide useful information for the interim and move us toward our long-term goals. Another over-arching theme among the three different pollutants and the different health study approaches is the need for integration among alternate exposure assessment approaches. For example, different groups may advocate exposure indicators, biomonitoring, mapping methods (GIS), modeling, environmental media monitoring, and/or personal exposure modeling. However, emerging research reveals that the greatest progress comes from integration among two or more of these efforts.

Development and Evaluation of Portable Passive and Real-time Measurement Systems, and Dispersion Models, to Estimate Exposure to Traffic-related Air Pollutants

Development and Evaluation of Portable Passive and Real-time Measurement Systems, and Dispersion Models, to Estimate Exposure to Traffic-related Air Pollutants PDF Author: Nicola Masey
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
This research developed efficient applications of portable measurement systems to assess human exposure to traffic-related air pollution through direct measurement, and evaluation of exposure models.Passive NO2 samplers are deployed at large numbers of sites in epidemiological studies to estimate typical concentrations over 1-4 weeks. I found that deployment time could be reduced to 2 days with limited impact on the accuracy and precision of exposure estimates. This shorter measurement time enabled observation of wind-speed effects leading to overestimation of ambient concentrations by passive samplers. Through development of a post-processing technique and/or inclusion of a membrane I improved sampler accuracy. Portable sensors can provide detailed estimates of personal exposures to air pollution. Many sensor-based monitors have not been subject to rigorous testing procedures to quantify their accuracy. I observed that the most accurate estimates of concentrations from NO2 and O3 sensor-based monitors required regular, intermittent calibration against reference analysers under similar environmental conditions to field measurements. I also found deterioration in BC monitor accuracy and precison when the attenuation of the collection filter exceeded 40 and no improvement in monitor accuracy was observed when filter darkness correction algorithms were applied. Portable sensors can be used to identify locations with higher concentrations, which may require more detailed monitoring. I established that repeated 6-minute measurements of BC and particle number concentrations estimated similar spatial trends to 1-week NO2 measurements using passive samplers. Dispersion models can be used to estimate pollution exposure at multiple locations over a study area. I found that initial user parameterisation in a weather model had limited effect on pollution estimates from a dispersion model. I evaluated a new GIS-based dispersion model (5 x 5 m NO2 estimates for a 3,500 km2 area, with model run times of under 10 minutes). I demonstrated that inclusion of discrete street canyon models and geospatial surrogates (accounting for urban morphology) improved model accuracy. The measurement and modelling evaluation research in this thesis complimented each other by providing efficient ways to directly measure population exposures.

WHO Guidelines for Indoor Air Quality

WHO Guidelines for Indoor Air Quality PDF Author:
Publisher: World Health Organization
ISBN:
Category : House & Home
Languages : en
Pages : 488

Book Description
This book presents WHO guidelines for the protection of public health from risks due to a number of chemicals commonly present in indoor air. The substances considered in this review, i.e. benzene, carbon monoxide, formaldehyde, naphthalene, nitrogen dioxide, polycyclic aromatic hydrocarbons (especially benzo[a]pyrene), radon, trichloroethylene and tetrachloroethylene, have indoor sources, are known in respect of their hazardousness to health and are often found indoors in concentrations of health concern. The guidelines are targeted at public health professionals involved in preventing health risks of environmental exposures, as well as specialists and authorities involved in the design and use of buildings, indoor materials and products. They provide a scientific basis for legally enforceable standards.

Development of Metrics for Individual Exposure Assessment to Traffic Related Air Pollution

Development of Metrics for Individual Exposure Assessment to Traffic Related Air Pollution PDF Author:
Publisher:
ISBN:
Category : Air
Languages : en
Pages :

Book Description
This project has explored the use of a variety of methods for assigning exposure to traffic related air pollution. The work has been conducted simultaneously with the collection of health outcome data for an epidemiological study investigating the respiratory and irritant effects of changes in traffic related air pollution. Epidemiological studies investigating the effects of environmental exposures often suffer from poor or inadequate exposure assessment.

Exposure Assessment of Air Pollutants

Exposure Assessment of Air Pollutants PDF Author: Christian Monn
Publisher:
ISBN:
Category :
Languages : en
Pages : 106

Book Description


A Pseudo Individual Near Real-time Measurement for Assessing Air Pollution Exposure in Selected Texas Cities

A Pseudo Individual Near Real-time Measurement for Assessing Air Pollution Exposure in Selected Texas Cities PDF Author: Tianfang Bernie Fang
Publisher:
ISBN:
Category : Air
Languages : en
Pages : 356

Book Description
Air pollution causes severe health effects and economic loss. Many major air-pollution-related studies focus on place-based measures and simulation. Typical placebased air pollution studies cannot portray individuals' air pollution exposure scenarios. In recent years, individual-based air pollution exposure measures have been developed rapidly. Based on an extensive literature review of place-based geography and people-based geography, air pollution exposure assessment methods (including place-based and individual-based ones), and health effects of air pollution exposure, this dissertation research aims to investigate an innovative modeling approach for assessing individual near real-time air pollution exposure. The first part of the model development is to design a series of near real-time space-time air pollution scenario cubes. Originating from time geography, space-time cubes provide an approach to integrate spatial and temporal air pollution information into a 3D space. The base of space-time cubes represents the variation of air pollution in a 2D geographical space while the height represents time. The second part of the model development is to geovisualize volunteers' individual real-time space-time trajectories using 3D space-time path maps. The last part of the model development is to integrate space-time cubes and space-time trajectories to develop the pseudo individual near real-time air pollution monitoring (PIRAM in short) models and the derivative models - the integrated pseudo individual near real-time air quality index (PIRAQI in short) models and the integrated pseudo individual near real-time air pollution dose simulation (PIRADS in short) models. Volunteers' individual diurnal ambient ozone (O3) pollution exposures in Houston, Austin, and San Antonio are modeled in this dissertation research. The contributions of this dissertation research are four-fold. First, it can help in understanding air pollution and individual exposure from a people-based geography perspective. Second, it enriches the individual-based air pollution exposure measure study by emphasizing individual travel behaviors in the individual air pollution exposure context. Third, its results can reveal the characteristics of the individual real-time air pollution exposure, which will contribute to local air pollution policy making. Fourth, the PIRAM platform only needs one handheld device terminal, such as a GPS smartphone, which ensure a good end user experience and potential commercial value.