Asphalt Mix Characterization Using Dynamic Modulus and APA Testing PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Asphalt Mix Characterization Using Dynamic Modulus and APA Testing PDF full book. Access full book title Asphalt Mix Characterization Using Dynamic Modulus and APA Testing by . Download full books in PDF and EPUB format.

Asphalt Mix Characterization Using Dynamic Modulus and APA Testing

Asphalt Mix Characterization Using Dynamic Modulus and APA Testing PDF Author:
Publisher:
ISBN:
Category : Asphalt
Languages : en
Pages : 116

Book Description


Asphalt Mix Characterization Using Dynamic Modulus and APA Testing

Asphalt Mix Characterization Using Dynamic Modulus and APA Testing PDF Author:
Publisher:
ISBN:
Category : Asphalt
Languages : en
Pages : 116

Book Description


Asphalt Materials Characterization in Support of Implementation of the Proposed Mechanistic-empirical Pavement Design Guide

Asphalt Materials Characterization in Support of Implementation of the Proposed Mechanistic-empirical Pavement Design Guide PDF Author:
Publisher:
ISBN:
Category : Pavements, Asphalt concrete
Languages : en
Pages : 45

Book Description
The proposed Mechanistic-Empirical Pavement Design Guide (MEPDG) procedure is an improved methodology for pavement design and evaluation of paving materials. Since this new procedure depends heavily on the characterization of the fundamental engineering properties of paving materials, a thorough material characterization of mixes used in Virginia is needed to use the MEPDG to design new and rehabilitated flexible pavements. The primary objective of this project was to perform a full hot-mix asphalt (HMA) characterization in accordance with the procedure established by the proposed MEPDG to support its implementation in Virginia. This objective was achieved by testing a sample of surface, intermediate, and base mixes. The project examined the dynamic modulus, the main HMA material property required by the MEPDG, as well as creep compliance and tensile strength, which are needed to predict thermal cracking. In addition, resilient modulus tests, which are not required by the MEPDG, were also performed on the different mixes to investigate possible correlations between this test and the dynamic modulus. Loose samples for 11 mixes (4 base, 4 intermediate, and 3 surface mixes) were collected from different plants across Virginia. Representative samples underwent testing for maximum theoretical specific gravity, asphalt content using the ignition oven method, and gradation of the reclaimed aggregate. Specimens for the various tests were then prepared using the Superpave gyratory compactor with a target voids in total mix (VTM) of 7% ± 1% (after coring and/or cutting). The investigation confirmed that the dynamic modulus test is an effective test for determining the mechanical behavior of HMA at different temperatures and loading frequencies. The test results showed that the dynamic modulus is sensitive to the mix constituents (aggregate type, asphalt content, percentage of recycled asphalt pavement, etc.) and that even mixes of the same type (SM-9.5A, IM-19.0A, and BM 25.0) had different measured dynamic modulus values because they had different constituents. The level 2 dynamic modulus prediction equation reasonably estimated the measured dynamic modulus; however, it did not capture some of the differences between the mixes captured by the measured data. Unfortunately, the indirect tension strength and creep tests needed for the low-temperature cracking model did not produce very repeatable results; this could be due to the type of extensometers used for the test. Based on the results of the investigation, it is recommended that the Virginia Department of Transportation use level 1 input data to characterize the dynamic modulus of the HMA for projects of significant impact. The dynamic modulus test is easy to perform and gives a full characterization of the asphalt mixture. Level 2 data (based on the default prediction equation) could be used for smaller projects pending further investigation of the revised prediction equation incorporated in the new MEPDG software/guide. In addition, a sensitivity analysis is recommended to quantify the effect of changing the dynamic modulus on the asphalt pavement design. Since low-temperature cracking is not a widespread problem in Virginia, use of level 2 or 3 indirect tensile creep and strength data is recommended at this stage.

Asphalt Mixture Performance Characterization Using Small-Scale Cylindrical Specimens

Asphalt Mixture Performance Characterization Using Small-Scale Cylindrical Specimens PDF Author: Brian K. Diefenderfer
Publisher:
ISBN:
Category : Asphalt concrete
Languages : en
Pages : 50

Book Description
The results of dynamic modulus testing have become one of the primarily used performance criteria to evaluate the laboratory properties of asphalt mixtures. This test is commonly conducted to characterize asphalt mixtures mechanistically using an asphalt mixture performance tester as developed in NCHRP Project 9-29. The typical test specimen geometry consists of a cylinder having a 100-mm diameter and a 150-mm height. This geometry is practical for laboratory-prepared specimens produced using a gyratory compactor. However, the specimen scale is problematic when the test specimen is prepared from field cores and the investigator wishes to isolate the testing to a single asphalt mixture material/layer. This is because most asphalt mixture layers, especially surface and intermediate layers, are placed having a thickness less than 150 mm. This study investigated the use of small-scale cylindrical specimens as an alternative means to conduct dynamic modulus testing of asphalt mixtures. To validate the small-scale approach, the dynamic modulus from small-scale specimens was compared to the dynamic modulus from full-size specimens (100 × 150 mm) using asphalt mixtures having a nominal maximum aggregate size (NMAS) of 9.5, 12.5, 19.0, and 25.0 mm. Small-scale cylindrical specimens having a diameter and height of 38 × 135 mm, 50 × 135 mm, 38 × 110 mm, and 50 × 110 mm were studied. Based on the findings of the study, for 9.5- and 12.5-mm NMAS mixtures, any of the four small-scale geometry dimensions appears to be a suitable alternative to the full-size specimen when the full-size specimen cannot be produced. For 19.0- and 25.0-mm NMAS mixtures, the two small-scale geometries having a diameter of 50 mm appear to be suitable alternatives to the full-size specimen when the full-size specimen cannot be produced.

Characterization of Asphalt Mixtures and Rap Binder Properties Through Impact Resonance Test

Characterization of Asphalt Mixtures and Rap Binder Properties Through Impact Resonance Test PDF Author: Ilker Boz
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Characterization of asphalt concrete is of paramount importance for the sound structural design and analysis of flexible pavements. Of equal importance is the availability of test methods that can provide an accurate and reliable measure of the required engineering properties of the material. For routine applications in material characterization, selected test methods should be reliable, simple, quick, repeatable, and cost eective. The use of nondestructive test (NDT) methods has proven to provide such characterization capabilities. Among those methods, the impact resonance (IR) test is a vibration based NDT method, and has been increasingly used for asphalt concrete evaluation and characterization in the past two decades. The majority of studies regarding the IR test in asphalt concrete applications have been focused on comparison of the IR test moduli with the moduli obtained from conventional asphalt concrete dynamic modulus tests and the predictive equations. In this dissertation, the IR test was utilized to characterize the properties of asphalt concrete mixtures and recycled asphalt pavement (RAP) binder through mixture testing at a range of temperatures. To this eect, several independent studies were conducted.The second order equation of motion assumption in rheological modeling of the IR test response was evaluated for asphalt concrete testing. A set of asphalt concrete specimens was tested with the IR test, and the obtained signals at a range of temperatures were evaluated by means of the Hankel matrix method. The results showed that the assumption is violated for asphalt concrete testing, especially at high temperatures, mainly due to the presence of noise in the obtained response. However, the Hankel method was employed to filter out the noise. It was seen that the assumption could be employed for asphalt concrete at a range of temperatures including high temperatures, provided that the filtering is performed on the obtained signal. The results also showed that the employed filtering procedure produced improvements for the IR test material dependent responses, resonant frequency and especially damping ratio calculations.The IR test results are influenced by specimen size and testing configurations. A study was conducted to investigate the influence of aspect ratio (length/diameter) of laboratory specimens on the frequency response of asphalt concrete when tested with the IR. The IR test, performed in a longitudinal mode, demonstrated that the test is repeatable and reproducible. The test results indicated that the frequency response increased as the aspect ratio increased approximately up to 0.7, and then it decreased with a nonlinear trend as the aspect ratio increased beyond 0.7, indicating that the tendency of the frequency response reached a plateau as the aspect ratio increased. It was inferred from the test results that there was a threshold aspect ratio at which the fundamental longitudinal frequency mode was not the dominant frequency mode. Velocity calculations from measured resonant frequencies indicated that the true material properties for the longitudinal mode could be attained at an aspect ratio of as low as 1.In another study, the sensitivity of the resonant frequency response of the IR testing of asphalt concrete to asphalt concrete mixture parameters was investigated. The IR tests were performed on disk-shaped asphalt concrete specimens at the transverse (flexural) mode of vibration at a temperature range of approximately -10 to 50oC. Test results revealed that the relationship between the resonant frequency and temperature was described by a polynomial fit, and it was shown through statistical analysis that the slopes of the fit were significantly aected by mixture parameters such as air void content and binder content. Also, the statistical formulation (predictive model) between the resonant frequency and the asphalt concrete mixture parameters were established for a given aggregate gradation of nominal maximum size and an aggregate specific gravity. The prediction accuracy of the model was evaluated by independent data sets, and the test results indicated that the maximum error between the measured and predicted resonant frequencies was not more than 9 percent.In an eort to characterize the properties of recycled asphalt pavement (RAP) binder with the IR test through asphalt concrete mixture testing, two approaches were utilized. An approach is proposed for determination of binder properties through the IR testing of mixtures with RAP and binders with known engineering properties. The IR tests were performed in the longitudinal mode at a range of temperatures between 3 and 35oC. Also, RAP binder and virgin binders were tested using dynamic shear rheometer (DSR) at the same temperature range as the IR testing. It was seen that the IR test ranked the expected trend of binder stiness with respect to the resonant frequency of mixtures. The results indicate the potential of the proposed concept and feasibility of the approach in determining binder properties, including properties of the RAP binder. A practical method is proposed for determination of binder properties based on mixture testing.In the second approach, the IR test potential to characterize the low-temperature properties of an RAP binder that incorporated a rejuvenating agent was investigated. This approach included testing of mixes with virgin binders and pure RAP mixes treated with a rejuvenating agent at dierent levels using the IR, as well as testing of blends of recovered RAP binder, rejuvenator, and virgin binder using bending beam rheometer (BBR). The results showed that the IR test can properly rank the expected stiness of binders through mixture testing. The results also indicated high linear correlations between mixture properties obtained from the IR test (modulus and phase angle) and binder properties obtained from the BBR test (stiness and m-value, a relaxation index). The results clearly demonstrate the potential of IR to be used for grading and optimization for the asphalt binder of RAP and rejuvenator content in lieu of the binder recovery method.

Bituminous Mixtures and Pavements VI

Bituminous Mixtures and Pavements VI PDF Author: A. Nikolaides
Publisher: CRC Press
ISBN: 1315668165
Category : Technology & Engineering
Languages : en
Pages : 884

Book Description
Bituminous Mixtures and Pavements contains 113 accepted papers from the 6th International ConferenceBituminous Mixtures and Pavements (6th ICONFBMP, Thessaloniki, Greece, 10-12 June 2015). The 6th ICONFBMP is organized every four years by the Highway Engineering Laboratory of the Aristotle University of Thessaloniki, Greece, in conjunction with

Development and Application of Bituminous Materials for Civil Infrastructures

Development and Application of Bituminous Materials for Civil Infrastructures PDF Author: Hui Yao
Publisher: Frontiers Media SA
ISBN: 2889715418
Category : Technology & Engineering
Languages : en
Pages : 214

Book Description


Performance Tests for Hot Mix Asphalt (HMA) Including Fundamental and Empirical Procedures

Performance Tests for Hot Mix Asphalt (HMA) Including Fundamental and Empirical Procedures PDF Author: Louay Nadhim Mohammad
Publisher: ASTM International
ISBN: 0803134959
Category : Anisotropy
Languages : en
Pages : 216

Book Description


Accelerated Pavement Testing to Transport Infrastructure Innovation

Accelerated Pavement Testing to Transport Infrastructure Innovation PDF Author: Armelle Chabot
Publisher: Springer Nature
ISBN: 3030552365
Category : Technology & Engineering
Languages : en
Pages : 724

Book Description
This volume gathers the latest advances, innovations, and applications in the field of accelerated pavement testing (APT), presented at the 6th International Conference on Accelerated Pavement Testing, in Nantes, France, in April 2022. Discussing APT, which involves rapid testing of full-scale pavement constructions for structural deterioration, the book covers topics such as APT facilities, APT of asphalt concrete and sustainable/innovative materials, APT for airfield pavements, testing of maintenance and rehabilitation solutions, testing of smart and multi-functional pavements, data analysis and modeling, monitoring and non-destructive testing, and efficient means of calibrating/developing pavement design methods. Featuring peer-reviewed contributions by leading international researchers and engineers, the book is a timely and highly relevant resource for materials scientists and engineers interested in determining the performance of pavement structures during their service life (10+ years) in a few weeks or months.

Asphalt Mixture Performance Characterization Using Small-Scale Cylindrical Specimens

Asphalt Mixture Performance Characterization Using Small-Scale Cylindrical Specimens PDF Author: Brian K. Diefenderfer
Publisher:
ISBN:
Category : Asphalt concrete
Languages : en
Pages : 0

Book Description
The results of dynamic modulus testing have become one of the primarily used performance criteria to evaluate the laboratory properties of asphalt mixtures. This test is commonly conducted to characterize asphalt mixtures mechanistically using an asphalt mixture performance tester as developed in NCHRP Project 9-29. The typical test specimen geometry consists of a cylinder having a 100-mm diameter and a 150-mm height. This geometry is practical for laboratory-prepared specimens produced using a gyratory compactor. However, the specimen scale is problematic when the test specimen is prepared from field cores and the investigator wishes to isolate the testing to a single asphalt mixture material/layer. This is because most asphalt mixture layers, especially surface and intermediate layers, are placed having a thickness less than 150 mm. This study investigated the use of small-scale cylindrical specimens as an alternative means to conduct dynamic modulus testing of asphalt mixtures. To validate the small-scale approach, the dynamic modulus from small-scale specimens was compared to the dynamic modulus from full-size specimens (100 × 150 mm) using asphalt mixtures having a nominal maximum aggregate size (NMAS) of 9.5, 12.5, 19.0, and 25.0 mm. Small-scale cylindrical specimens having a diameter and height of 38 × 135 mm, 50 × 135 mm, 38 × 110 mm, and 50 × 110 mm were studied. Based on the findings of the study, for 9.5- and 12.5-mm NMAS mixtures, any of the four small-scale geometry dimensions appears to be a suitable alternative to the full-size specimen when the full-size specimen cannot be produced. For 19.0- and 25.0-mm NMAS mixtures, the two small-scale geometries having a diameter of 50 mm appear to be suitable alternatives to the full-size specimen when the full-size specimen cannot be produced.

Material Characterization of Alaskan Asphalt Mixtures Containing Reclaimed Asphalt Pavement (RAP)

Material Characterization of Alaskan Asphalt Mixtures Containing Reclaimed Asphalt Pavement (RAP) PDF Author: Beaux M. Kemp
Publisher:
ISBN:
Category : Pavements, Asphalt
Languages : en
Pages : 308

Book Description
Recycled asphalt pavement (RAP) material has been combined with hot-mix asphalt (HMA) paving for several decades to reduce construction costs and environmental impacts. In Alaska, the HMA specification allows up to 15% RAP for Type-II A mixes (typically used in wearing courses) and 25% for Type II-B mixes (used in wearing or base courses). Highway construction projects statewide are expected to see an increase in the use of RAP in future mix designs. Pavement engineers use mechanistic procedures (e.g. Alaska Flexible Pavement Design software and Mechanistic-Empirical Pavement Design Guide) to develop flexible pavement design alternatives. These procedures require material engineering properties as an input source. Consequently, it is essential to properly establish the engineering properties of HMA mixtures containing RAP. In order to characterize Alaskan HMA materials containing RAP, this study evaluated 11 HMA mixtures comprised of three typical Alaskan asphalt binders (PG 52-28, PG 58-34 and PG 52-40) containing 0%, 25% and 35% RAP that were either produced in the lab or a hot-plant (i.e. collected from actual paving projects in Alaska). Various binder and mix properties were determined including; true high binder grades, complex shear modulus (G*) and phase angle (delta) at high performance temperatures, as well as asphalt mixture performance tests (AMPT); dynamic modulus (E*) and flow number (FN). The original (h-based) and the modified (G*-based) Witczak (E*) predictive models were evaluated for these mixtures based on job mix formulae availability for use in mechanistic design procedures. It was found that the incorporation of RAP into Alaskan HMA increased E* and FN of the mixtures, which indicates that the addition of RAP increased the stiffness and rutting resistance of the mixtures tested. A local calibration of the Witczak predictive models may be required for increased accuracy of E* predictions. For Alaskan conditions, a savings of $13.60/ton of mix was estimated for a 25% RAP mix. For an 18-feet wide one lane-mile of HMA mat, it is estimated to have a 21% savings in the 25% RAP mix compared to the conventional virgin (no RAP) mix.