Author: J. Coates
Publisher: Cambridge University Press
ISBN: 0521386195
Category : Mathematics
Languages : en
Pages : 404
Book Description
Aimed at presenting nontechnical explanations, all the essays in this collection of papers from the 1989 LMS Durham Symposium on L-functions are the contributions of renowned algebraic number theory specialists.
L-Functions and Arithmetic
Author: J. Coates
Publisher: Cambridge University Press
ISBN: 0521386195
Category : Mathematics
Languages : en
Pages : 404
Book Description
Aimed at presenting nontechnical explanations, all the essays in this collection of papers from the 1989 LMS Durham Symposium on L-functions are the contributions of renowned algebraic number theory specialists.
Publisher: Cambridge University Press
ISBN: 0521386195
Category : Mathematics
Languages : en
Pages : 404
Book Description
Aimed at presenting nontechnical explanations, all the essays in this collection of papers from the 1989 LMS Durham Symposium on L-functions are the contributions of renowned algebraic number theory specialists.
Elliptic Curves, Modular Forms, and Their L-functions
Author: Álvaro Lozano-Robledo
Publisher: American Mathematical Soc.
ISBN: 0821852426
Category : Mathematics
Languages : en
Pages : 217
Book Description
Many problems in number theory have simple statements, but their solutions require a deep understanding of algebra, algebraic geometry, complex analysis, group representations, or a combination of all four. The original simply stated problem can be obscured in the depth of the theory developed to understand it. This book is an introduction to some of these problems, and an overview of the theories used nowadays to attack them, presented so that the number theory is always at the forefront of the discussion. Lozano-Robledo gives an introductory survey of elliptic curves, modular forms, and $L$-functions. His main goal is to provide the reader with the big picture of the surprising connections among these three families of mathematical objects and their meaning for number theory. As a case in point, Lozano-Robledo explains the modularity theorem and its famous consequence, Fermat's Last Theorem. He also discusses the Birch and Swinnerton-Dyer Conjecture and other modern conjectures. The book begins with some motivating problems and includes numerous concrete examples throughout the text, often involving actual numbers, such as 3, 4, 5, $\frac{3344161}{747348}$, and $\frac{2244035177043369699245575130906674863160948472041} {8912332268928859588025535178967163570016480830}$. The theories of elliptic curves, modular forms, and $L$-functions are too vast to be covered in a single volume, and their proofs are outside the scope of the undergraduate curriculum. However, the primary objects of study, the statements of the main theorems, and their corollaries are within the grasp of advanced undergraduates. This book concentrates on motivating the definitions, explaining the statements of the theorems and conjectures, making connections, and providing lots of examples, rather than dwelling on the hard proofs. The book succeeds if, after reading the text, students feel compelled to study elliptic curves and modular forms in all their glory.
Publisher: American Mathematical Soc.
ISBN: 0821852426
Category : Mathematics
Languages : en
Pages : 217
Book Description
Many problems in number theory have simple statements, but their solutions require a deep understanding of algebra, algebraic geometry, complex analysis, group representations, or a combination of all four. The original simply stated problem can be obscured in the depth of the theory developed to understand it. This book is an introduction to some of these problems, and an overview of the theories used nowadays to attack them, presented so that the number theory is always at the forefront of the discussion. Lozano-Robledo gives an introductory survey of elliptic curves, modular forms, and $L$-functions. His main goal is to provide the reader with the big picture of the surprising connections among these three families of mathematical objects and their meaning for number theory. As a case in point, Lozano-Robledo explains the modularity theorem and its famous consequence, Fermat's Last Theorem. He also discusses the Birch and Swinnerton-Dyer Conjecture and other modern conjectures. The book begins with some motivating problems and includes numerous concrete examples throughout the text, often involving actual numbers, such as 3, 4, 5, $\frac{3344161}{747348}$, and $\frac{2244035177043369699245575130906674863160948472041} {8912332268928859588025535178967163570016480830}$. The theories of elliptic curves, modular forms, and $L$-functions are too vast to be covered in a single volume, and their proofs are outside the scope of the undergraduate curriculum. However, the primary objects of study, the statements of the main theorems, and their corollaries are within the grasp of advanced undergraduates. This book concentrates on motivating the definitions, explaining the statements of the theorems and conjectures, making connections, and providing lots of examples, rather than dwelling on the hard proofs. The book succeeds if, after reading the text, students feel compelled to study elliptic curves and modular forms in all their glory.
Arithmetic of L-functions
Author: Cristian Popescu
Publisher: American Mathematical Soc.
ISBN: 0821886983
Category : Mathematics
Languages : en
Pages : 517
Book Description
Publisher: American Mathematical Soc.
ISBN: 0821886983
Category : Mathematics
Languages : en
Pages : 517
Book Description
Advanced Analytic Number Theory: L-Functions
Author: Carlos J. Moreno
Publisher: American Mathematical Soc.
ISBN: 0821842668
Category : Mathematics
Languages : en
Pages : 313
Book Description
Since the pioneering work of Euler, Dirichlet, and Riemann, the analytic properties of L-functions have been used to study the distribution of prime numbers. With the advent of the Langlands Program, L-functions have assumed a greater role in the study of the interplay between Diophantine questions about primes and representation theoretic properties of Galois representations. This book provides a complete introduction to the most significant class of L-functions: the Artin-Hecke L-functions associated to finite-dimensional representations of Weil groups and to automorphic L-functions of principal type on the general linear group. In addition to establishing functional equations, growth estimates, and non-vanishing theorems, a thorough presentation of the explicit formulas of Riemann type in the context of Artin-Hecke and automorphic L-functions is also given. The survey is aimed at mathematicians and graduate students who want to learn about the modern analytic theory of L-functions and their applications in number theory and in the theory of automorphic representations. The requirements for a profitable study of this monograph are a knowledge of basic number theory and the rudiments of abstract harmonic analysis on locally compact abelian groups.
Publisher: American Mathematical Soc.
ISBN: 0821842668
Category : Mathematics
Languages : en
Pages : 313
Book Description
Since the pioneering work of Euler, Dirichlet, and Riemann, the analytic properties of L-functions have been used to study the distribution of prime numbers. With the advent of the Langlands Program, L-functions have assumed a greater role in the study of the interplay between Diophantine questions about primes and representation theoretic properties of Galois representations. This book provides a complete introduction to the most significant class of L-functions: the Artin-Hecke L-functions associated to finite-dimensional representations of Weil groups and to automorphic L-functions of principal type on the general linear group. In addition to establishing functional equations, growth estimates, and non-vanishing theorems, a thorough presentation of the explicit formulas of Riemann type in the context of Artin-Hecke and automorphic L-functions is also given. The survey is aimed at mathematicians and graduate students who want to learn about the modern analytic theory of L-functions and their applications in number theory and in the theory of automorphic representations. The requirements for a profitable study of this monograph are a knowledge of basic number theory and the rudiments of abstract harmonic analysis on locally compact abelian groups.
Zeta and $L$-functions in Number Theory and Combinatorics
Author: Wen-Ching Winnie Li
Publisher: American Mathematical Soc.
ISBN: 1470449005
Category : Mathematics
Languages : en
Pages : 106
Book Description
Zeta and L-functions play a central role in number theory. They provide important information of arithmetic nature. This book, which grew out of the author's teaching over several years, explores the interaction between number theory and combinatorics using zeta and L-functions as a central theme. It provides a systematic and comprehensive account of these functions in a combinatorial setting and establishes, among other things, the combinatorial counterparts of celebrated results in number theory, such as the prime number theorem and the Chebotarev density theorem. The spectral theory for finite graphs and higher dimensional complexes is studied. Of special interest in theory and applications are the spectrally extremal objects, called Ramanujan graphs and Ramanujan complexes, which can be characterized by their associated zeta functions satisfying the Riemann Hypothesis. Explicit constructions of these extremal combinatorial objects, using number-theoretic and combinatorial means, are presented. Research on zeta and L-functions for complexes other than graphs emerged only in recent years. This is the first book for graduate students and researchers offering deep insight into this fascinating and fast developing area.
Publisher: American Mathematical Soc.
ISBN: 1470449005
Category : Mathematics
Languages : en
Pages : 106
Book Description
Zeta and L-functions play a central role in number theory. They provide important information of arithmetic nature. This book, which grew out of the author's teaching over several years, explores the interaction between number theory and combinatorics using zeta and L-functions as a central theme. It provides a systematic and comprehensive account of these functions in a combinatorial setting and establishes, among other things, the combinatorial counterparts of celebrated results in number theory, such as the prime number theorem and the Chebotarev density theorem. The spectral theory for finite graphs and higher dimensional complexes is studied. Of special interest in theory and applications are the spectrally extremal objects, called Ramanujan graphs and Ramanujan complexes, which can be characterized by their associated zeta functions satisfying the Riemann Hypothesis. Explicit constructions of these extremal combinatorial objects, using number-theoretic and combinatorial means, are presented. Research on zeta and L-functions for complexes other than graphs emerged only in recent years. This is the first book for graduate students and researchers offering deep insight into this fascinating and fast developing area.
Elementary Theory of L-functions and Eisenstein Series
Author: Haruzo Hida
Publisher: Cambridge University Press
ISBN: 9780521435697
Category : Mathematics
Languages : en
Pages : 404
Book Description
The theory of p-adic and classic modular forms, and the study of arithmetic and p-adic L-functions has proved to be a fruitful area of mathematics over the last decade. Professor Hida has given courses on these topics in the USA, Japan, and in France, and in this book provides the reader with an elementary but detailed insight into the theory of L-functions. The presentation is self contained and concise, and the subject is approached using only basic tools from complex analysis and cohomology theory. Graduate students wishing to know more about L-functions will find that this book offers a unique introduction to this fascinating branch of mathematics.
Publisher: Cambridge University Press
ISBN: 9780521435697
Category : Mathematics
Languages : en
Pages : 404
Book Description
The theory of p-adic and classic modular forms, and the study of arithmetic and p-adic L-functions has proved to be a fruitful area of mathematics over the last decade. Professor Hida has given courses on these topics in the USA, Japan, and in France, and in this book provides the reader with an elementary but detailed insight into the theory of L-functions. The presentation is self contained and concise, and the subject is approached using only basic tools from complex analysis and cohomology theory. Graduate students wishing to know more about L-functions will find that this book offers a unique introduction to this fascinating branch of mathematics.
Arithmetic Functions and Integer Products
Author: P.D.T.A. Elliott
Publisher: Springer Science & Business Media
ISBN: 1461385482
Category : Mathematics
Languages : en
Pages : 469
Book Description
Every positive integer m has a product representation of the form where v, k and the ni are positive integers, and each Ei = ± I. A value can be given for v which is uniform in the m. A representation can be computed so that no ni exceeds a certain fixed power of 2m, and the number k of terms needed does not exceed a fixed power of log 2m. Consider next the collection of finite probability spaces whose associated measures assume only rational values. Let hex) be a real-valued function which measures the information in an event, depending only upon the probability x with which that event occurs. Assuming hex) to be non negative, and to satisfy certain standard properties, it must have the form -A(x log x + (I - x) 10g(I -x». Except for a renormalization this is the well-known function of Shannon. What do these results have in common? They both apply the theory of arithmetic functions. The two widest classes of arithmetic functions are the real-valued additive and the complex-valued multiplicative functions. Beginning in the thirties of this century, the work of Erdos, Kac, Kubilius, Turan and others gave a discipline to the study of the general value distribution of arithmetic func tions by the introduction of ideas, methods and results from the theory of Probability. I gave an account of the resulting extensive and still developing branch of Number Theory in volumes 239/240 of this series, under the title Probabilistic Number Theory.
Publisher: Springer Science & Business Media
ISBN: 1461385482
Category : Mathematics
Languages : en
Pages : 469
Book Description
Every positive integer m has a product representation of the form where v, k and the ni are positive integers, and each Ei = ± I. A value can be given for v which is uniform in the m. A representation can be computed so that no ni exceeds a certain fixed power of 2m, and the number k of terms needed does not exceed a fixed power of log 2m. Consider next the collection of finite probability spaces whose associated measures assume only rational values. Let hex) be a real-valued function which measures the information in an event, depending only upon the probability x with which that event occurs. Assuming hex) to be non negative, and to satisfy certain standard properties, it must have the form -A(x log x + (I - x) 10g(I -x». Except for a renormalization this is the well-known function of Shannon. What do these results have in common? They both apply the theory of arithmetic functions. The two widest classes of arithmetic functions are the real-valued additive and the complex-valued multiplicative functions. Beginning in the thirties of this century, the work of Erdos, Kac, Kubilius, Turan and others gave a discipline to the study of the general value distribution of arithmetic func tions by the introduction of ideas, methods and results from the theory of Probability. I gave an account of the resulting extensive and still developing branch of Number Theory in volumes 239/240 of this series, under the title Probabilistic Number Theory.
Arithmetical Functions
Author: Komaravolu Chandrasekharan
Publisher: Springer Science & Business Media
ISBN: 3642500269
Category : Mathematics
Languages : en
Pages : 244
Book Description
The plan of this book had its inception in a course of lectures on arithmetical functions given by me in the summer of 1964 at the Forschungsinstitut fUr Mathematik of the Swiss Federal Institute of Technology, Zurich, at the invitation of Professor Beno Eckmann. My Introduction to Analytic Number Theory has appeared in the meanwhile, and this book may be looked upon as a sequel. It presupposes only a modicum of acquaintance with analysis and number theory. The arithmetical functions considered here are those associated with the distribution of prime numbers, as well as the partition function and the divisor function. Some of the problems posed by their asymptotic behaviour form the theme. They afford a glimpse of the variety of analytical methods used in the theory, and of the variety of problems that await solution. I owe a debt of gratitude to Professor Carl Ludwig Siegel, who has read the book in manuscript and given me the benefit of his criticism. I have improved the text in several places in response to his comments. I must thank Professor Raghavan Narasimhan for many stimulating discussions, and Mr. Henri Joris for the valuable assistance he has given me in checking the manuscript and correcting the proofs. K. Chandrasekharan July 1970 Contents Chapter I The prime number theorem and Selberg's method § 1. Selberg's fonnula . . . . . . 1 § 2. A variant of Selberg's formula 6 12 § 3. Wirsing's inequality . . . . . 17 § 4. The prime number theorem. .
Publisher: Springer Science & Business Media
ISBN: 3642500269
Category : Mathematics
Languages : en
Pages : 244
Book Description
The plan of this book had its inception in a course of lectures on arithmetical functions given by me in the summer of 1964 at the Forschungsinstitut fUr Mathematik of the Swiss Federal Institute of Technology, Zurich, at the invitation of Professor Beno Eckmann. My Introduction to Analytic Number Theory has appeared in the meanwhile, and this book may be looked upon as a sequel. It presupposes only a modicum of acquaintance with analysis and number theory. The arithmetical functions considered here are those associated with the distribution of prime numbers, as well as the partition function and the divisor function. Some of the problems posed by their asymptotic behaviour form the theme. They afford a glimpse of the variety of analytical methods used in the theory, and of the variety of problems that await solution. I owe a debt of gratitude to Professor Carl Ludwig Siegel, who has read the book in manuscript and given me the benefit of his criticism. I have improved the text in several places in response to his comments. I must thank Professor Raghavan Narasimhan for many stimulating discussions, and Mr. Henri Joris for the valuable assistance he has given me in checking the manuscript and correcting the proofs. K. Chandrasekharan July 1970 Contents Chapter I The prime number theorem and Selberg's method § 1. Selberg's fonnula . . . . . . 1 § 2. A variant of Selberg's formula 6 12 § 3. Wirsing's inequality . . . . . 17 § 4. The prime number theorem. .
The Eigenbook
Author: Joël Bellaïche
Publisher: Springer Nature
ISBN: 3030772632
Category : Mathematics
Languages : en
Pages : 319
Book Description
This book discusses the p-adic modular forms, the eigencurve that parameterize them, and the p-adic L-functions one can associate to them. These theories and their generalizations to automorphic forms for group of higher ranks are of fundamental importance in number theory. For graduate students and newcomers to this field, the book provides a solid introduction to this highly active area of research. For experts, it will offer the convenience of collecting into one place foundational definitions and theorems with complete and self-contained proofs. Written in an engaging and educational style, the book also includes exercises and provides their solution.
Publisher: Springer Nature
ISBN: 3030772632
Category : Mathematics
Languages : en
Pages : 319
Book Description
This book discusses the p-adic modular forms, the eigencurve that parameterize them, and the p-adic L-functions one can associate to them. These theories and their generalizations to automorphic forms for group of higher ranks are of fundamental importance in number theory. For graduate students and newcomers to this field, the book provides a solid introduction to this highly active area of research. For experts, it will offer the convenience of collecting into one place foundational definitions and theorems with complete and self-contained proofs. Written in an engaging and educational style, the book also includes exercises and provides their solution.
Elementary Dirichlet Series and Modular Forms
Author: Goro Shimura
Publisher: Springer Science & Business Media
ISBN: 0387724745
Category : Mathematics
Languages : en
Pages : 151
Book Description
A book on any mathematical subject beyond the textbook level is of little value unless it contains new ideas and new perspectives. It helps to include new results, provided that they give the reader new insights and are presented along with known old results in a clear exposition. It is with this philosophy that the author writes this volume. The two subjects, Dirichlet series and modular forms, are traditional subjects, but here they are treated in both orthodox and unorthodox ways. Regardless of the unorthodox treatment, the author has made the book accessible to those who are not familiar with such topics by including plenty of expository material.
Publisher: Springer Science & Business Media
ISBN: 0387724745
Category : Mathematics
Languages : en
Pages : 151
Book Description
A book on any mathematical subject beyond the textbook level is of little value unless it contains new ideas and new perspectives. It helps to include new results, provided that they give the reader new insights and are presented along with known old results in a clear exposition. It is with this philosophy that the author writes this volume. The two subjects, Dirichlet series and modular forms, are traditional subjects, but here they are treated in both orthodox and unorthodox ways. Regardless of the unorthodox treatment, the author has made the book accessible to those who are not familiar with such topics by including plenty of expository material.