Nonlinear Potential Theory on Metric Spaces PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Nonlinear Potential Theory on Metric Spaces PDF full book. Access full book title Nonlinear Potential Theory on Metric Spaces by Anders Björn. Download full books in PDF and EPUB format.

Nonlinear Potential Theory on Metric Spaces

Nonlinear Potential Theory on Metric Spaces PDF Author: Anders Björn
Publisher: European Mathematical Society
ISBN: 9783037190999
Category : Mathematics
Languages : en
Pages : 422

Book Description
The $p$-Laplace equation is the main prototype for nonlinear elliptic problems and forms a basis for various applications, such as injection moulding of plastics, nonlinear elasticity theory, and image processing. Its solutions, called p-harmonic functions, have been studied in various contexts since the 1960s, first on Euclidean spaces and later on Riemannian manifolds, graphs, and Heisenberg groups. Nonlinear potential theory of p-harmonic functions on metric spaces has been developing since the 1990s and generalizes and unites these earlier theories. This monograph gives a unified treatment of the subject and covers most of the available results in the field, so far scattered over a large number of research papers. The aim is to serve both as an introduction to the area for interested readers and as a reference text for active researchers. The presentation is rather self contained, but it is assumed that readers know measure theory and functional analysis. The first half of the book deals with Sobolev type spaces, so-called Newtonian spaces, based on upper gradients on general metric spaces. In the second half, these spaces are used to study p-harmonic functions on metric spaces, and a nonlinear potential theory is developed under some additional, but natural, assumptions on the underlying metric space. Each chapter contains historical notes with relevant references, and an extensive index is provided at the end of the book.

Nonlinear Potential Theory on Metric Spaces

Nonlinear Potential Theory on Metric Spaces PDF Author: Anders Björn
Publisher: European Mathematical Society
ISBN: 9783037190999
Category : Mathematics
Languages : en
Pages : 422

Book Description
The $p$-Laplace equation is the main prototype for nonlinear elliptic problems and forms a basis for various applications, such as injection moulding of plastics, nonlinear elasticity theory, and image processing. Its solutions, called p-harmonic functions, have been studied in various contexts since the 1960s, first on Euclidean spaces and later on Riemannian manifolds, graphs, and Heisenberg groups. Nonlinear potential theory of p-harmonic functions on metric spaces has been developing since the 1990s and generalizes and unites these earlier theories. This monograph gives a unified treatment of the subject and covers most of the available results in the field, so far scattered over a large number of research papers. The aim is to serve both as an introduction to the area for interested readers and as a reference text for active researchers. The presentation is rather self contained, but it is assumed that readers know measure theory and functional analysis. The first half of the book deals with Sobolev type spaces, so-called Newtonian spaces, based on upper gradients on general metric spaces. In the second half, these spaces are used to study p-harmonic functions on metric spaces, and a nonlinear potential theory is developed under some additional, but natural, assumptions on the underlying metric space. Each chapter contains historical notes with relevant references, and an extensive index is provided at the end of the book.

Approximation, Complex Analysis, and Potential Theory

Approximation, Complex Analysis, and Potential Theory PDF Author: Norair Arakelian
Publisher: Springer Science & Business Media
ISBN: 9401009791
Category : Mathematics
Languages : en
Pages : 275

Book Description
Hermann Weyl considered value distribution theory to be the greatest mathematical achievement of the first half of the 20th century. The present lectures show that this beautiful theory is still growing. An important tool is complex approximation and some of the lectures are devoted to this topic. Harmonic approximation started to flourish astonishingly rapidly towards the end of the 20th century, and the latest development, including approximation manifolds, are presented here. Since de Branges confirmed the Bieberbach conjecture, the primary problem in geometric function theory is to find the precise value of the Bloch constant. After more than half a century without progress, a breakthrough was recently achieved and is presented. Other topics are also presented, including Jensen measures. A valuable introduction to currently active areas of complex analysis and potential theory. Can be read with profit by both students of analysis and research mathematicians.

Gradient Flows

Gradient Flows PDF Author: Luigi Ambrosio
Publisher: Springer Science & Business Media
ISBN: 376438722X
Category : Mathematics
Languages : en
Pages : 333

Book Description
The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.

Approximation of Set-valued Functions

Approximation of Set-valued Functions PDF Author: Nira Dyn
Publisher:
ISBN: 9781783263028
Category : Mathematics
Languages : en
Pages : 153

Book Description
This book is aimed at the approximation of set-valued functions with compact sets in an Euclidean space as values. The interest in set-valued functions is rather new. Such functions arise in various modern areas such as control theory, dynamical systems and optimization. The authors' motivation also comes from the newer field of geometric modeling, in particular from the problem of reconstruction of 3D objects from 2D cross-sections. This is reflected in the focus of this book, which is the approximation of set-valued functions with general (not necessarily convex) sets as values, while previous results on this topic are mainly confined to the convex case. The approach taken in this book is to adapt classical approximation operators and to provide error estimates in terms of the regularity properties of the approximated set-valued functions. Specialized results are given for functions with 1D sets as values.

Handbook of Metric Fixed Point Theory

Handbook of Metric Fixed Point Theory PDF Author: W.A. Kirk
Publisher: Springer Science & Business Media
ISBN: 9401717486
Category : Mathematics
Languages : en
Pages : 702

Book Description
Metric fixed point theory encompasses the branch of fixed point theory which metric conditions on the underlying space and/or on the mappings play a fundamental role. In some sense the theory is a far-reaching outgrowth of Banach's contraction mapping principle. A natural extension of the study of contractions is the limiting case when the Lipschitz constant is allowed to equal one. Such mappings are called nonexpansive. Nonexpansive mappings arise in a variety of natural ways, for example in the study of holomorphic mappings and hyperconvex metric spaces. Because most of the spaces studied in analysis share many algebraic and topological properties as well as metric properties, there is no clear line separating metric fixed point theory from the topological or set-theoretic branch of the theory. Also, because of its metric underpinnings, metric fixed point theory has provided the motivation for the study of many geometric properties of Banach spaces. The contents of this Handbook reflect all of these facts. The purpose of the Handbook is to provide a primary resource for anyone interested in fixed point theory with a metric flavor. The goal is to provide information for those wishing to find results that might apply to their own work and for those wishing to obtain a deeper understanding of the theory. The book should be of interest to a wide range of researchers in mathematical analysis as well as to those whose primary interest is the study of fixed point theory and the underlying spaces. The level of exposition is directed to a wide audience, including students and established researchers.

Fixed Point Theory in Distance Spaces

Fixed Point Theory in Distance Spaces PDF Author: William Kirk
Publisher: Springer
ISBN: 3319109278
Category : Mathematics
Languages : en
Pages : 176

Book Description
This is a monograph on fixed point theory, covering the purely metric aspects of the theory–particularly results that do not depend on any algebraic structure of the underlying space. Traditionally, a large body of metric fixed point theory has been couched in a functional analytic framework. This aspect of the theory has been written about extensively. There are four classical fixed point theorems against which metric extensions are usually checked. These are, respectively, the Banach contraction mapping principal, Nadler’s well known set-valued extension of that theorem, the extension of Banach’s theorem to nonexpansive mappings, and Caristi’s theorem. These comparisons form a significant component of this book. This book is divided into three parts. Part I contains some aspects of the purely metric theory, especially Caristi’s theorem and a few of its many extensions. There is also a discussion of nonexpansive mappings, viewed in the context of logical foundations. Part I also contains certain results in hyperconvex metric spaces and ultrametric spaces. Part II treats fixed point theory in classes of spaces which, in addition to having a metric structure, also have geometric structure. These specifically include the geodesic spaces, length spaces and CAT(0) spaces. Part III focuses on distance spaces that are not necessarily metric. These include certain distance spaces which lie strictly between the class of semimetric spaces and the class of metric spaces, in that they satisfy relaxed versions of the triangle inequality, as well as other spaces whose distance properties do not fully satisfy the metric axioms.

Metric Spaces

Metric Spaces PDF Author: Satish Shirali
Publisher: Springer Science & Business Media
ISBN: 9781852339227
Category : Mathematics
Languages : en
Pages : 238

Book Description
One of the first books to be dedicated specifically to metric spaces Full of worked examples, to get complex ideas across more easily

Recent Developments In Nonlinear Analysis - Proceedings Of The Conference In Mathematics And Mathematical Physics

Recent Developments In Nonlinear Analysis - Proceedings Of The Conference In Mathematics And Mathematical Physics PDF Author: Habib Ammari
Publisher: World Scientific
ISBN: 9814465607
Category : Mathematics
Languages : en
Pages : 376

Book Description
This volume contains a selection of contributions by prominent mathematicians from the many interesting presentations delivered at the Conference of Mathematics and Mathematical Physics that was held in Fez, Morocco duing the period of 28-30 October, 2008.Readers will find that this volume merges different approaches in nonlinear analysis, and covers, in a broad and balanced fashion, both the theoretical and numerical aspects of the subject. Graduate students, researchers and professionals with interest in the subject will find it useful while keeping abreast with the latest advancements in this field.

Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms

Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms PDF Author: SIAM Activity Group on Discrete Mathematics
Publisher: SIAM
ISBN: 9780898714906
Category : Mathematics
Languages : en
Pages : 962

Book Description
Contains 130 papers, which were selected based on originality, technical contribution, and relevance. Although the papers were not formally refereed, every attempt was made to verify the main claims. It is expected that most will appear in more complete form in scientific journals. The proceedings also includes the paper presented by invited plenary speaker Ronald Graham, as well as a portion of the papers presented by invited plenary speakers Udi Manber and Christos Papadimitriou.

Function Spaces and Potential Theory

Function Spaces and Potential Theory PDF Author: David R. Adams
Publisher: Springer Science & Business Media
ISBN: 3662032821
Category : Mathematics
Languages : en
Pages : 372

Book Description
"..carefully and thoughtfully written and prepared with, in my opinion, just the right amount of detail included...will certainly be a primary source that I shall turn to." Proceedings of the Edinburgh Mathematical Society