Approximate Homotopy of Homomorphisms from $C(X)$ into a Simple $C^*$-Algebra PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Approximate Homotopy of Homomorphisms from $C(X)$ into a Simple $C^*$-Algebra PDF full book. Access full book title Approximate Homotopy of Homomorphisms from $C(X)$ into a Simple $C^*$-Algebra by Huaxin Lin. Download full books in PDF and EPUB format.

Approximate Homotopy of Homomorphisms from $C(X)$ into a Simple $C^*$-Algebra

Approximate Homotopy of Homomorphisms from $C(X)$ into a Simple $C^*$-Algebra PDF Author: Huaxin Lin
Publisher: American Mathematical Soc.
ISBN: 0821851942
Category : Mathematics
Languages : en
Pages : 144

Book Description
"Volume 205, number 963 (second of 5 numbers)."

Approximate Homotopy of Homomorphisms from $C(X)$ into a Simple $C^*$-Algebra

Approximate Homotopy of Homomorphisms from $C(X)$ into a Simple $C^*$-Algebra PDF Author: Huaxin Lin
Publisher: American Mathematical Soc.
ISBN: 0821851942
Category : Mathematics
Languages : en
Pages : 144

Book Description
"Volume 205, number 963 (second of 5 numbers)."

A Concise Course in Algebraic Topology

A Concise Course in Algebraic Topology PDF Author: J. P. May
Publisher: University of Chicago Press
ISBN: 9780226511832
Category : Mathematics
Languages : en
Pages : 262

Book Description
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.

Approximate Homotopy of Homomorphisms from C(X) Into a Simple C*-algebra

Approximate Homotopy of Homomorphisms from C(X) Into a Simple C*-algebra PDF Author: Huaxin Lin
Publisher:
ISBN: 9781470405779
Category : MATHEMATICS
Languages : en
Pages : 131

Book Description


Cohomology Operations and Applications in Homotopy Theory

Cohomology Operations and Applications in Homotopy Theory PDF Author: Robert E. Mosher
Publisher: Courier Corporation
ISBN: 0486466647
Category : Mathematics
Languages : en
Pages : 226

Book Description
Cohomology operations are at the center of a major area of activity in algebraic topology. This treatment explores the single most important variety of operations, the Steenrod squares. It constructs these operations, proves their major properties, and provides numerous applications, including several different techniques of homotopy theory useful for computation. 1968 edition.

Nilpotence and Periodicity in Stable Homotopy Theory

Nilpotence and Periodicity in Stable Homotopy Theory PDF Author: Douglas C. Ravenel
Publisher: Princeton University Press
ISBN: 9780691025728
Category : Mathematics
Languages : en
Pages : 228

Book Description
Nilpotence and Periodicity in Stable Homotopy Theory describes some major advances made in algebraic topology in recent years, centering on the nilpotence and periodicity theorems, which were conjectured by the author in 1977 and proved by Devinatz, Hopkins, and Smith in 1985. During the last ten years a number of significant advances have been made in homotopy theory, and this book fills a real need for an up-to-date text on that topic. Ravenel's first few chapters are written with a general mathematical audience in mind. They survey both the ideas that lead up to the theorems and their applications to homotopy theory. The book begins with some elementary concepts of homotopy theory that are needed to state the problem. This includes such notions as homotopy, homotopy equivalence, CW-complex, and suspension. Next the machinery of complex cobordism, Morava K-theory, and formal group laws in characteristic p are introduced. The latter portion of the book provides specialists with a coherent and rigorous account of the proofs. It includes hitherto unpublished material on the smash product and chromatic convergence theorems and on modular representations of the symmetric group.

Lecture Notes in Algebraic Topology

Lecture Notes in Algebraic Topology PDF Author: James F. Davis
Publisher: American Mathematical Society
ISBN: 1470473682
Category : Mathematics
Languages : en
Pages : 385

Book Description
The amount of algebraic topology a graduate student specializing in topology must learn can be intimidating. Moreover, by their second year of graduate studies, students must make the transition from understanding simple proofs line-by-line to understanding the overall structure of proofs of difficult theorems. To help students make this transition, the material in this book is presented in an increasingly sophisticated manner. It is intended to bridge the gap between algebraic and geometric topology, both by providing the algebraic tools that a geometric topologist needs and by concentrating on those areas of algebraic topology that are geometrically motivated. Prerequisites for using this book include basic set-theoretic topology, the definition of CW-complexes, some knowledge of the fundamental group/covering space theory, and the construction of singular homology. Most of this material is briefly reviewed at the beginning of the book. The topics discussed by the authors include typical material for first- and second-year graduate courses. The core of the exposition consists of chapters on homotopy groups and on spectral sequences. There is also material that would interest students of geometric topology (homology with local coefficients and obstruction theory) and algebraic topology (spectra and generalized homology), as well as preparation for more advanced topics such as algebraic $K$-theory and the s-cobordism theorem. A unique feature of the book is the inclusion, at the end of each chapter, of several projects that require students to present proofs of substantial theorems and to write notes accompanying their explanations. Working on these projects allows students to grapple with the “big picture”, teaches them how to give mathematical lectures, and prepares them for participating in research seminars. The book is designed as a textbook for graduate students studying algebraic and geometric topology and homotopy theory. It will also be useful for students from other fields such as differential geometry, algebraic geometry, and homological algebra. The exposition in the text is clear; special cases are presented over complex general statements.

The Homology of Iterated Loop Spaces

The Homology of Iterated Loop Spaces PDF Author: F. R. Cohen
Publisher: Springer
ISBN: 3540379851
Category : Mathematics
Languages : en
Pages : 501

Book Description


H Ring Spectra and Their Applications

H Ring Spectra and Their Applications PDF Author: Robert R. Bruner
Publisher: Springer
ISBN: 3540397787
Category : Mathematics
Languages : en
Pages : 396

Book Description


Categorical Homotopy Theory

Categorical Homotopy Theory PDF Author: Emily Riehl
Publisher: Cambridge University Press
ISBN: 1139952633
Category : Mathematics
Languages : en
Pages : 371

Book Description
This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.

Algebraic Methods in Unstable Homotopy Theory

Algebraic Methods in Unstable Homotopy Theory PDF Author: Joseph Neisendorfer
Publisher: Cambridge University Press
ISBN: 1139482599
Category : Mathematics
Languages : en
Pages : 575

Book Description
The most modern and thorough treatment of unstable homotopy theory available. The focus is on those methods from algebraic topology which are needed in the presentation of results, proven by Cohen, Moore, and the author, on the exponents of homotopy groups. The author introduces various aspects of unstable homotopy theory, including: homotopy groups with coefficients; localization and completion; the Hopf invariants of Hilton, James, and Toda; Samelson products; homotopy Bockstein spectral sequences; graded Lie algebras; differential homological algebra; and the exponent theorems concerning the homotopy groups of spheres and Moore spaces. This book is suitable for a course in unstable homotopy theory, following a first course in homotopy theory. It is also a valuable reference for both experts and graduate students wishing to enter the field.