Approximate Bayesian Techniques for Inference in Stochastic Dynamical Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Approximate Bayesian Techniques for Inference in Stochastic Dynamical Systems PDF full book. Access full book title Approximate Bayesian Techniques for Inference in Stochastic Dynamical Systems by Michail D. Vrettas. Download full books in PDF and EPUB format.

Approximate Bayesian Techniques for Inference in Stochastic Dynamical Systems

Approximate Bayesian Techniques for Inference in Stochastic Dynamical Systems PDF Author: Michail D. Vrettas
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
This thesis is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variant of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here two new extended frameworks are derived and presented that are based on basis function expansions and local polynomial approximations of a recently proposed variational Bayesian algorithm. It is shown that the new extensions converge to the original variational algorithm and can be used for state estimation (smoothing). However, the main focus is on estimating the (hyper- ) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new methods are numerically validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein-Uhlenbeck process, for which the exact likelihood can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz '63 (3-dimensional model). The algorithms are also applied to the 40 dimensional stochastic Lorenz '96 system. In this investigation these new approaches are compared with a variety of other well known methods such as the ensemble Kalman filter / smoother, a hybrid Monte Carlo sampler, the dual unscented Kalman filter (for jointly estimating the systems states and model parameters) and full weak-constraint 4D-Var. Empirical analysis of their asymptotic behaviour as a function of observation density or length of time window increases is provided.

Approximate Bayesian Techniques for Inference in Stochastic Dynamical Systems

Approximate Bayesian Techniques for Inference in Stochastic Dynamical Systems PDF Author: Michail D. Vrettas
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
This thesis is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variant of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here two new extended frameworks are derived and presented that are based on basis function expansions and local polynomial approximations of a recently proposed variational Bayesian algorithm. It is shown that the new extensions converge to the original variational algorithm and can be used for state estimation (smoothing). However, the main focus is on estimating the (hyper- ) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new methods are numerically validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein-Uhlenbeck process, for which the exact likelihood can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz '63 (3-dimensional model). The algorithms are also applied to the 40 dimensional stochastic Lorenz '96 system. In this investigation these new approaches are compared with a variety of other well known methods such as the ensemble Kalman filter / smoother, a hybrid Monte Carlo sampler, the dual unscented Kalman filter (for jointly estimating the systems states and model parameters) and full weak-constraint 4D-Var. Empirical analysis of their asymptotic behaviour as a function of observation density or length of time window increases is provided.

Handbook of Approximate Bayesian Computation

Handbook of Approximate Bayesian Computation PDF Author: Scott A. Sisson
Publisher: CRC Press
ISBN: 1439881510
Category : Mathematics
Languages : en
Pages : 679

Book Description
As the world becomes increasingly complex, so do the statistical models required to analyse the challenging problems ahead. For the very first time in a single volume, the Handbook of Approximate Bayesian Computation (ABC) presents an extensive overview of the theory, practice and application of ABC methods. These simple, but powerful statistical techniques, take Bayesian statistics beyond the need to specify overly simplified models, to the setting where the model is defined only as a process that generates data. This process can be arbitrarily complex, to the point where standard Bayesian techniques based on working with tractable likelihood functions would not be viable. ABC methods finesse the problem of model complexity within the Bayesian framework by exploiting modern computational power, thereby permitting approximate Bayesian analyses of models that would otherwise be impossible to implement. The Handbook of ABC provides illuminating insight into the world of Bayesian modelling for intractable models for both experts and newcomers alike. It is an essential reference book for anyone interested in learning about and implementing ABC techniques to analyse complex models in the modern world.

Bayesian Inference for Stochastic Processes

Bayesian Inference for Stochastic Processes PDF Author: Lyle D. Broemeling
Publisher: CRC Press
ISBN: 1315303574
Category : Mathematics
Languages : en
Pages : 409

Book Description
This is the first book designed to introduce Bayesian inference procedures for stochastic processes. There are clear advantages to the Bayesian approach (including the optimal use of prior information). Initially, the book begins with a brief review of Bayesian inference and uses many examples relevant to the analysis of stochastic processes, including the four major types, namely those with discrete time and discrete state space and continuous time and continuous state space. The elements necessary to understanding stochastic processes are then introduced, followed by chapters devoted to the Bayesian analysis of such processes. It is important that a chapter devoted to the fundamental concepts in stochastic processes is included. Bayesian inference (estimation, testing hypotheses, and prediction) for discrete time Markov chains, for Markov jump processes, for normal processes (e.g. Brownian motion and the Ornstein–Uhlenbeck process), for traditional time series, and, lastly, for point and spatial processes are described in detail. Heavy emphasis is placed on many examples taken from biology and other scientific disciplines. In order analyses of stochastic processes, it will use R and WinBUGS. Features: Uses the Bayesian approach to make statistical Inferences about stochastic processes The R package is used to simulate realizations from different types of processes Based on realizations from stochastic processes, the WinBUGS package will provide the Bayesian analysis (estimation, testing hypotheses, and prediction) for the unknown parameters of stochastic processes To illustrate the Bayesian inference, many examples taken from biology, economics, and astronomy will reinforce the basic concepts of the subject A practical approach is implemented by considering realistic examples of interest to the scientific community WinBUGS and R code are provided in the text, allowing the reader to easily verify the results of the inferential procedures found in the many examples of the book Readers with a good background in two areas, probability theory and statistical inference, should be able to master the essential ideas of this book.

Network Bioscience, 2nd Edition

Network Bioscience, 2nd Edition PDF Author: Marco Pellegrini
Publisher: Frontiers Media SA
ISBN: 288963650X
Category :
Languages : en
Pages : 270

Book Description
Network science has accelerated a deep and successful trend in research that influences a range of disciplines like mathematics, graph theory, physics, statistics, data science and computer science (just to name a few) and adapts the relevant techniques and insights to address relevant but disparate social, biological, technological questions. We are now in an era of 'big biological data' supported by cost-effective high-throughput genomic, transcriptomic, proteomic, metabolomic data collection techniques that allow one to take snapshots of the cells' molecular profiles in a systematic fashion. Moreover recently, also phenotypic data, data on diseases, symptoms, patients, etc. are being collected at nation-wide level thus giving us another source of highly related (causal) 'big data'. This wealth of data is usually modeled as networks (aka binary relations, graphs or webs) of interactions, (including protein-protein, metabolic, signaling and transcription-regulatory interactions). The network model is a key view point leading to the uncovering of mesoscale phenomena, thus providing an essential bridge between the observable phenotypes and 'omics' underlying mechanisms. Moreover, network analysis is a powerful 'hypothesis generation' tool guiding the scientific cycle of 'data gathering', 'data interpretation, 'hypothesis generation' and 'hypothesis testing'. A major challenge in contemporary research is the synthesis of deep insights coming from network science with the wealth of data (often noisy, contradictory, incomplete and difficult to replicate) so to answer meaningful biological questions, in a quantifiable way using static and dynamic properties of biological networks.

Bayesian Reasoning and Machine Learning

Bayesian Reasoning and Machine Learning PDF Author: David Barber
Publisher: Cambridge University Press
ISBN: 0521518148
Category : Computers
Languages : en
Pages : 739

Book Description
A practical introduction perfect for final-year undergraduate and graduate students without a solid background in linear algebra and calculus.

Bayesian Time Series Models

Bayesian Time Series Models PDF Author: David Barber
Publisher: Cambridge University Press
ISBN: 0521196760
Category : Computers
Languages : en
Pages : 432

Book Description
The first unified treatment of time series modelling techniques spanning machine learning, statistics, engineering and computer science.

Bayesian Inference of Stochastic Dynamical Models

Bayesian Inference of Stochastic Dynamical Models PDF Author: Peter Guang Yi Lu
Publisher:
ISBN:
Category :
Languages : en
Pages : 175

Book Description
A new methodology for Bayesian inference of stochastic dynamical models is developed. The methodology leverages the dynamically orthogonal (DO) evolution equations for reduced-dimension uncertainty evolution and the Gaussian mixture model DO filtering algorithm for nonlinear reduced-dimension state variable inference to perform parallelized computation of marginal likelihoods for multiple candidate models, enabling efficient Bayesian update of model distributions. The methodology also employs reduced-dimension state augmentation to accommodate models featuring uncertain parameters. The methodology is applied successfully to two high-dimensional, nonlinear simulated fluid and ocean systems. Successful joint inference of an uncertain spatial geometry, one uncertain model parameter, and [Omicron](105) uncertain state variables is achieved for the first. Successful joint inference of an uncertain stochastic dynamical equation and [Omicron](105) uncertain state variables is achieved for the second. Extensions to adaptive modeling and adaptive sampling are discussed.

Bayesian Filtering and Smoothing

Bayesian Filtering and Smoothing PDF Author: Simo Särkkä
Publisher: Cambridge University Press
ISBN: 110703065X
Category : Computers
Languages : en
Pages : 255

Book Description
A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.

Bayesian Inference for Indirectly Observed Stochastic Processes

Bayesian Inference for Indirectly Observed Stochastic Processes PDF Author: Joseph Dureau
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Stochastic processes are mathematical objects that offer a probabilistic representation of how some quantities evolve in time. In this thesis we focus on estimating the trajectory and parameters of dynamical systems in cases where only indirect observations of the driving stochastic process are available. We have first explored means to use weekly recorded numbers of cases of Influenza to capture how the frequency and nature of contacts made with infected individuals evolved in time. The latter was modelled with diffusions and can be used to quantify the impact of varying drivers of epidemics as holidays, climate, or prevention interventions. Following this idea, we have estimated how the frequency of condom use has evolved during the intervention of the Gates Foundation against HIV in India. In this setting, the available estimates of the proportion of individuals infected with HIV were not only indirect but also very scarce observations, leading to specific difficulties. At last, we developed a methodology for fractional Brownian motions (fBM), here a fractional stochastic volatility model, indirectly observed through market prices. The intractability of the likelihood function, requiring augmentation of the parameter space with the diffusion path, is ubiquitous in this thesis. We aimed for inference methods robust to refinements in time discretisations, made necessary to enforce accuracy of Euler schemes. The particle Marginal Metropolis Hastings (PMMH) algorithm exhibits this mesh free property. We propose the use of fast approximate filters as a pre-exploration tool to estimate the shape of the target density, for a quicker and more robust adaptation phase of the asymptotically exact algorithm. The fBM problem could not be treated with the PMMH, which required an alternative methodology based on reparameterisation and advanced Hamiltonian Monte Carlo techniques on the diffusion pathspace, that would also be applicable in the Markovian setting.

Dynamic Linear Models with R

Dynamic Linear Models with R PDF Author: Giovanni Petris
Publisher: Springer Science & Business Media
ISBN: 0387772383
Category : Mathematics
Languages : en
Pages : 258

Book Description
State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms. The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.