Author: Radin Dardashti
Publisher: Cambridge University Press
ISBN: 110860515X
Category : Science
Languages : en
Pages : 451
Book Description
Do we need to reconsider scientific methodology in light of modern physics? Has the traditional scientific method become outdated, does it need to be defended against dangerous incursions, or has it always been different from what the canonical view suggests? To what extent should we accept non-empirical strategies for scientific theory assessment? Many core aspects of contemporary fundamental physics are far from empirically well-confirmed. There is controversy on the epistemic status of the corresponding theories, in particular cosmic inflation, the multiverse, and string theory. This collection of essays is based on the high profile workshop 'Why Trust a Theory?' and provides interdisciplinary perspectives on empirical testing in fundamental physics from leading physicists, philosophers and historians of science. Integrating different contemporary and historical positions, it will be of interest to philosophers of science and physicists, as well as anyone interested in the foundations of contemporary science.
Why Trust a Theory?
Author: Radin Dardashti
Publisher: Cambridge University Press
ISBN: 110860515X
Category : Science
Languages : en
Pages : 451
Book Description
Do we need to reconsider scientific methodology in light of modern physics? Has the traditional scientific method become outdated, does it need to be defended against dangerous incursions, or has it always been different from what the canonical view suggests? To what extent should we accept non-empirical strategies for scientific theory assessment? Many core aspects of contemporary fundamental physics are far from empirically well-confirmed. There is controversy on the epistemic status of the corresponding theories, in particular cosmic inflation, the multiverse, and string theory. This collection of essays is based on the high profile workshop 'Why Trust a Theory?' and provides interdisciplinary perspectives on empirical testing in fundamental physics from leading physicists, philosophers and historians of science. Integrating different contemporary and historical positions, it will be of interest to philosophers of science and physicists, as well as anyone interested in the foundations of contemporary science.
Publisher: Cambridge University Press
ISBN: 110860515X
Category : Science
Languages : en
Pages : 451
Book Description
Do we need to reconsider scientific methodology in light of modern physics? Has the traditional scientific method become outdated, does it need to be defended against dangerous incursions, or has it always been different from what the canonical view suggests? To what extent should we accept non-empirical strategies for scientific theory assessment? Many core aspects of contemporary fundamental physics are far from empirically well-confirmed. There is controversy on the epistemic status of the corresponding theories, in particular cosmic inflation, the multiverse, and string theory. This collection of essays is based on the high profile workshop 'Why Trust a Theory?' and provides interdisciplinary perspectives on empirical testing in fundamental physics from leading physicists, philosophers and historians of science. Integrating different contemporary and historical positions, it will be of interest to philosophers of science and physicists, as well as anyone interested in the foundations of contemporary science.
A Project to Find the Fundamental Theory of Physics
Author: Stephen Wolfram
Publisher: Wolfram Media
ISBN: 9781579550356
Category : Science
Languages : en
Pages : 0
Book Description
The Wolfram Physics Project is a bold effort to find the fundamental theory of physics. It combines new ideas with the latest research in physics, mathematics and computation in the push to achieve this ultimate goal of science. Written with Stephen Wolfram's characteristic expository flair, this book provides a unique opportunity to learn about a historic initiative in science right as it is happening. A Project to Find the Fundamental Theory of Physics includes an accessible introduction to the project as well as core technical exposition and rich, never-before-seen visualizations.
Publisher: Wolfram Media
ISBN: 9781579550356
Category : Science
Languages : en
Pages : 0
Book Description
The Wolfram Physics Project is a bold effort to find the fundamental theory of physics. It combines new ideas with the latest research in physics, mathematics and computation in the push to achieve this ultimate goal of science. Written with Stephen Wolfram's characteristic expository flair, this book provides a unique opportunity to learn about a historic initiative in science right as it is happening. A Project to Find the Fundamental Theory of Physics includes an accessible introduction to the project as well as core technical exposition and rich, never-before-seen visualizations.
Approaches to Fundamental Physics
Author: Ion-Olimpiu Stamatescu
Publisher: Springer
ISBN: 3540711171
Category : Science
Languages : en
Pages : 420
Book Description
This book offers a portrait of the research landscape of present-day fundamental theoretical physics. It presents contributions on particle theory, quantum field theory, general relativity, quantum gravity, string theory and cosmology. The book examines a way of communicating about methods, achievements and promises of the different approaches which shape the development of this field.
Publisher: Springer
ISBN: 3540711171
Category : Science
Languages : en
Pages : 420
Book Description
This book offers a portrait of the research landscape of present-day fundamental theoretical physics. It presents contributions on particle theory, quantum field theory, general relativity, quantum gravity, string theory and cosmology. The book examines a way of communicating about methods, achievements and promises of the different approaches which shape the development of this field.
Quantum Physics
Author: John S. Townsend
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 440
Book Description
This brilliantly innovative textbook is intended as a first introduction to quantum mechanics and its applications. Townsend's new text shuns the historical ordering that characterizes so-called Modern Physics textbooks and applies a truly modern approach to this subject, starting instead with contemporary single-photon and single-atom interference experiments. The text progresses naturally from a thorough introduction to wave mechanics through applications of quantum mechanics to solid-state, nuclear, and particle physics, thereby including most of the topics normally presented in a Modern Physics course. Examples of topics include blackbody radiation, Bose-Einstein condensation, the band-structure of solids and the silicon revolution, the curve of binding energy and nuclear fission and fusion, and the Standard Model of particle physics. Students can see in quantum mechanics a common thread that ties these topics into a coherent picture of how the world works, a picture that gives students confidence that quantum mechanics really works, too. The book also includes a chapter-length appendix on special relativity for the benefit of students who have not had a previous exposure to this subject.Translation into Chinese.
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 440
Book Description
This brilliantly innovative textbook is intended as a first introduction to quantum mechanics and its applications. Townsend's new text shuns the historical ordering that characterizes so-called Modern Physics textbooks and applies a truly modern approach to this subject, starting instead with contemporary single-photon and single-atom interference experiments. The text progresses naturally from a thorough introduction to wave mechanics through applications of quantum mechanics to solid-state, nuclear, and particle physics, thereby including most of the topics normally presented in a Modern Physics course. Examples of topics include blackbody radiation, Bose-Einstein condensation, the band-structure of solids and the silicon revolution, the curve of binding energy and nuclear fission and fusion, and the Standard Model of particle physics. Students can see in quantum mechanics a common thread that ties these topics into a coherent picture of how the world works, a picture that gives students confidence that quantum mechanics really works, too. The book also includes a chapter-length appendix on special relativity for the benefit of students who have not had a previous exposure to this subject.Translation into Chinese.
Theory and Applications of the Poincaré Group
Author: Young Suh Kim
Publisher: Springer Science & Business Media
ISBN: 9400945582
Category : Science
Languages : en
Pages : 346
Book Description
Special relativity and quantum mechanics, formulated early in the twentieth century, are the two most important scientific languages and are likely to remain so for many years to come. In the 1920's, when quantum mechanics was developed, the most pressing theoretical problem was how to make it consistent with special relativity. In the 1980's, this is still the most pressing problem. The only difference is that the situation is more urgent now than before, because of the significant quantity of experimental data which need to be explained in terms of both quantum mechanics and special relativity. In unifying the concepts and algorithms of quantum mechanics and special relativity, it is important to realize that the underlying scientific language for both disciplines is that of group theory. The role of group theory in quantum mechanics is well known. The same is true for special relativity. Therefore, the most effective approach to the problem of unifying these two important theories is to develop a group theory which can accommodate both special relativity and quantum mechanics. As is well known, Eugene P. Wigner is one of the pioneers in developing group theoretical approaches to relativistic quantum mechanics. His 1939 paper on the inhomogeneous Lorentz group laid the foundation for this important research line. It is generally agreed that this paper was somewhat ahead of its time in 1939, and that contemporary physicists must continue to make real efforts to appreciate fully the content of this classic work.
Publisher: Springer Science & Business Media
ISBN: 9400945582
Category : Science
Languages : en
Pages : 346
Book Description
Special relativity and quantum mechanics, formulated early in the twentieth century, are the two most important scientific languages and are likely to remain so for many years to come. In the 1920's, when quantum mechanics was developed, the most pressing theoretical problem was how to make it consistent with special relativity. In the 1980's, this is still the most pressing problem. The only difference is that the situation is more urgent now than before, because of the significant quantity of experimental data which need to be explained in terms of both quantum mechanics and special relativity. In unifying the concepts and algorithms of quantum mechanics and special relativity, it is important to realize that the underlying scientific language for both disciplines is that of group theory. The role of group theory in quantum mechanics is well known. The same is true for special relativity. Therefore, the most effective approach to the problem of unifying these two important theories is to develop a group theory which can accommodate both special relativity and quantum mechanics. As is well known, Eugene P. Wigner is one of the pioneers in developing group theoretical approaches to relativistic quantum mechanics. His 1939 paper on the inhomogeneous Lorentz group laid the foundation for this important research line. It is generally agreed that this paper was somewhat ahead of its time in 1939, and that contemporary physicists must continue to make real efforts to appreciate fully the content of this classic work.
Physics for Mathematicians
Author: Michael Spivak
Publisher:
ISBN: 9780914098324
Category : Mechanics
Languages : en
Pages : 733
Book Description
Publisher:
ISBN: 9780914098324
Category : Mechanics
Languages : en
Pages : 733
Book Description
Process Physics
Author: Reginald T. Cahill
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 234
Book Description
This book is about a new and very radical information-theoretic approach to comprehending and modelling reality. It is called "Process Physics" because it uses a process model of time rather than, as in current physics, a non-process geometrical model of time, a model so successfully developed and used by Galileo, Newton, Einstein and others that for many physicists the phenomenon of time is actually identified with this geometrical model. Now, for the first time in the history of physics, we have a model of time that includes the distinctions between past, present and future. These distinctions cannot be made in the geometrical model of time. For this reason we can call the current prevailing physics Non-Process Physics. In Process Physics we turn to a fundamental reformulation of the key concepts in physics. This entails that we must identify both the successes and failures of the Non-Process Physics, for it almost succeeded.
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 234
Book Description
This book is about a new and very radical information-theoretic approach to comprehending and modelling reality. It is called "Process Physics" because it uses a process model of time rather than, as in current physics, a non-process geometrical model of time, a model so successfully developed and used by Galileo, Newton, Einstein and others that for many physicists the phenomenon of time is actually identified with this geometrical model. Now, for the first time in the history of physics, we have a model of time that includes the distinctions between past, present and future. These distinctions cannot be made in the geometrical model of time. For this reason we can call the current prevailing physics Non-Process Physics. In Process Physics we turn to a fundamental reformulation of the key concepts in physics. This entails that we must identify both the successes and failures of the Non-Process Physics, for it almost succeeded.
Fundamentals of Many-body Physics
Author: Wolfgang Nolting
Publisher: Springer Science & Business Media
ISBN: 354071930X
Category : Science
Languages : en
Pages : 607
Book Description
The goal of the present course on “Fundamentals of Theoretical Physics” is to be a direct accompaniment to the lower-division study of physics, and it aims at providing the ph- ical tools in the most straightforward and compact form as needed by the students in order to master theoretically more complex topics and problems in advanced studies and in research. The presentation is thus intentionally designed to be suf?ciently detailed and self-contained – sometimes, admittedly, at the cost of a certain elegance – to permit in- vidual study without reference to the secondary literature. This volume deals with the quantum theory of many-body systems. Building upon a basic knowledge of quantum mechanics and of statistical physics, modern techniques for the description of interacting many-particle systems are developed and applied to various real problems, mainly from the area of solid-state physics. A thorough revision should guarantee that the reader can access the relevant research literature without experiencing major problems in terms of the concepts and vocabulary, techniques and deductive methods found there. The world which surrounds us consists of very many particles interacting with one another, and their description requires in principle the solution of a corresponding number ofcoupledquantum-mechanicalequationsofmotion(Schrodinger ̈ equations),which,h- ever, is possible only in exceptional cases in a mathematically strict sense. The concepts of elementary quantum mechanics and quantum statistics are therefore not directly applicable in the form in which we have thus far encountered them. They require an extension and restructuring, which is termed “many-body theory”.
Publisher: Springer Science & Business Media
ISBN: 354071930X
Category : Science
Languages : en
Pages : 607
Book Description
The goal of the present course on “Fundamentals of Theoretical Physics” is to be a direct accompaniment to the lower-division study of physics, and it aims at providing the ph- ical tools in the most straightforward and compact form as needed by the students in order to master theoretically more complex topics and problems in advanced studies and in research. The presentation is thus intentionally designed to be suf?ciently detailed and self-contained – sometimes, admittedly, at the cost of a certain elegance – to permit in- vidual study without reference to the secondary literature. This volume deals with the quantum theory of many-body systems. Building upon a basic knowledge of quantum mechanics and of statistical physics, modern techniques for the description of interacting many-particle systems are developed and applied to various real problems, mainly from the area of solid-state physics. A thorough revision should guarantee that the reader can access the relevant research literature without experiencing major problems in terms of the concepts and vocabulary, techniques and deductive methods found there. The world which surrounds us consists of very many particles interacting with one another, and their description requires in principle the solution of a corresponding number ofcoupledquantum-mechanicalequationsofmotion(Schrodinger ̈ equations),which,h- ever, is possible only in exceptional cases in a mathematically strict sense. The concepts of elementary quantum mechanics and quantum statistics are therefore not directly applicable in the form in which we have thus far encountered them. They require an extension and restructuring, which is termed “many-body theory”.
Fundamental Problems in Quantum Physics
Author: M. Ferrero
Publisher: Springer Science & Business Media
ISBN: 9401585296
Category : Science
Languages : en
Pages : 372
Book Description
For many physicists quantum theory contains strong conceptual difficulties, while for others the apparent conclusions about the reality of our physical world and the ways in which we discover that reality remain philosophically unacceptable. This book focuses on recent theoretical and experimental developments in the foundations of quantum physics, including topics such as the puzzles and paradoxes which appear when general relativity and quantum mechanics are combined; the emergence of classical properties from quantum mechanics; stochastic electrodynamics; EPR experiments and Bell's Theorem; the consistent histories approach and the problem of datum uniqueness in quantum mechanics; non-local measurements and teleportation of quantum states; quantum non-demolition measurements in optics and matter wave properties observed by neutron, electron and atomic interferometry. Audience: This volume is intended for graduate students of physics and those interested in the foundations of quantum theory.
Publisher: Springer Science & Business Media
ISBN: 9401585296
Category : Science
Languages : en
Pages : 372
Book Description
For many physicists quantum theory contains strong conceptual difficulties, while for others the apparent conclusions about the reality of our physical world and the ways in which we discover that reality remain philosophically unacceptable. This book focuses on recent theoretical and experimental developments in the foundations of quantum physics, including topics such as the puzzles and paradoxes which appear when general relativity and quantum mechanics are combined; the emergence of classical properties from quantum mechanics; stochastic electrodynamics; EPR experiments and Bell's Theorem; the consistent histories approach and the problem of datum uniqueness in quantum mechanics; non-local measurements and teleportation of quantum states; quantum non-demolition measurements in optics and matter wave properties observed by neutron, electron and atomic interferometry. Audience: This volume is intended for graduate students of physics and those interested in the foundations of quantum theory.
An Introduction To Quantum Field Theory
Author: Michael E. Peskin
Publisher: CRC Press
ISBN: 0429972105
Category : Science
Languages : en
Pages : 865
Book Description
An Introduction to Quantum Field Theory is a textbook intended for the graduate physics course covering relativistic quantum mechanics, quantum electrodynamics, and Feynman diagrams. The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the stage for a discussion of the physical principles that underlie the fundamental interactions of elementary particle physics and their description by gauge field theories.
Publisher: CRC Press
ISBN: 0429972105
Category : Science
Languages : en
Pages : 865
Book Description
An Introduction to Quantum Field Theory is a textbook intended for the graduate physics course covering relativistic quantum mechanics, quantum electrodynamics, and Feynman diagrams. The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the stage for a discussion of the physical principles that underlie the fundamental interactions of elementary particle physics and their description by gauge field theories.