Application of Integral Equation and Finite-difference Methods to Electromagnetic Scattering by Two-dimensional and Body of Revolution Geometries PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Application of Integral Equation and Finite-difference Methods to Electromagnetic Scattering by Two-dimensional and Body of Revolution Geometries PDF full book. Access full book title Application of Integral Equation and Finite-difference Methods to Electromagnetic Scattering by Two-dimensional and Body of Revolution Geometries by James Joseph Kattoor. Download full books in PDF and EPUB format.

Application of Integral Equation and Finite-difference Methods to Electromagnetic Scattering by Two-dimensional and Body of Revolution Geometries

Application of Integral Equation and Finite-difference Methods to Electromagnetic Scattering by Two-dimensional and Body of Revolution Geometries PDF Author: James Joseph Kattoor
Publisher:
ISBN:
Category :
Languages : en
Pages : 256

Book Description
The theoretical and numerical studies of electromagnetic scattering and radiation from perfectly conducting as well as dielectric bodies are of great importance in the design of various systems, such as airborne targets and antennas. This thesis is an attempt to investigate integral equation and partial differential equation techniques as tools for numerical solution of such problems. These techniques are analyzed and some improvements to existing methods are presented. Some scattering problems involving two-dimensional and body of revolution geometries are solved using these techniques to demonstrate their capabilities and to point out their limitations. The first topic that this thesis addresses is the method of moments technique. To demonstrate the techniques developed, electromagnetic scattering from perfectly conducting as well as dielectric bodies of revolution is considered. There are two major issues addressed in this thesis, in this context. First, the use of quasi-entire-domain basis functions, as an alternative to the more traditional sub-sectional basis functions, is considered. It is shown that using the quasi-entire-domain basis functions results in a reduction in the size of the matrix that needs to be solved. The second major topic that Chapter 2 considers is the problem of electromagnetic scattering from layered and partially coated bodies of revolution. The formulation used to solve these problems as well as some results, are presented. The partial differential equation technique that this thesis considers is the finite-difference method. Chapter 3 discusses the finite-difference method in the frequency domain, while Chapter 4 focuses on the solution of Maxwell's equations in the time domain. Chapter 3 solves the problem of scattering by a conducting body of revolution using the finite-difference method in the frequency domain. The procedure outlined uses the coupled azimuthal potentials introduced by Morgan, Chang, and Mei (20) to obtain two coupled partial differential equations. These equations are then solved over a domain discretized using a boundary-fitted curvilinear coordinate system. The main contribution of this thesis in this respect is the application of the boundary-fitted curvilinear coordinate system to this class of problems. It is demonstrated that using this system eliminates the need for using the staircase approximation that is typically required in the finite-difference methods. Chapter 4 focuses on circumventing the problem of staircase approximation that is traditionally used to model material boundaries in finite-difference time-domain algorithms. In this context, two methods are presented. The first one, referred to in this thesis as the modified stencil approach, allows the use of arbitrarily-shaped quadrilateral grids. The second is similar to the boundary-fitted curvilinear coordinate approach presented in Chapter 3. The methods are compared and contrasted, and the advantages and disadvantages of each method are pointed out.

Application of Integral Equation and Finite-difference Methods to Electromagnetic Scattering by Two-dimensional and Body of Revolution Geometries

Application of Integral Equation and Finite-difference Methods to Electromagnetic Scattering by Two-dimensional and Body of Revolution Geometries PDF Author: James Joseph Kattoor
Publisher:
ISBN:
Category :
Languages : en
Pages : 256

Book Description
The theoretical and numerical studies of electromagnetic scattering and radiation from perfectly conducting as well as dielectric bodies are of great importance in the design of various systems, such as airborne targets and antennas. This thesis is an attempt to investigate integral equation and partial differential equation techniques as tools for numerical solution of such problems. These techniques are analyzed and some improvements to existing methods are presented. Some scattering problems involving two-dimensional and body of revolution geometries are solved using these techniques to demonstrate their capabilities and to point out their limitations. The first topic that this thesis addresses is the method of moments technique. To demonstrate the techniques developed, electromagnetic scattering from perfectly conducting as well as dielectric bodies of revolution is considered. There are two major issues addressed in this thesis, in this context. First, the use of quasi-entire-domain basis functions, as an alternative to the more traditional sub-sectional basis functions, is considered. It is shown that using the quasi-entire-domain basis functions results in a reduction in the size of the matrix that needs to be solved. The second major topic that Chapter 2 considers is the problem of electromagnetic scattering from layered and partially coated bodies of revolution. The formulation used to solve these problems as well as some results, are presented. The partial differential equation technique that this thesis considers is the finite-difference method. Chapter 3 discusses the finite-difference method in the frequency domain, while Chapter 4 focuses on the solution of Maxwell's equations in the time domain. Chapter 3 solves the problem of scattering by a conducting body of revolution using the finite-difference method in the frequency domain. The procedure outlined uses the coupled azimuthal potentials introduced by Morgan, Chang, and Mei (20) to obtain two coupled partial differential equations. These equations are then solved over a domain discretized using a boundary-fitted curvilinear coordinate system. The main contribution of this thesis in this respect is the application of the boundary-fitted curvilinear coordinate system to this class of problems. It is demonstrated that using this system eliminates the need for using the staircase approximation that is typically required in the finite-difference methods. Chapter 4 focuses on circumventing the problem of staircase approximation that is traditionally used to model material boundaries in finite-difference time-domain algorithms. In this context, two methods are presented. The first one, referred to in this thesis as the modified stencil approach, allows the use of arbitrarily-shaped quadrilateral grids. The second is similar to the boundary-fitted curvilinear coordinate approach presented in Chapter 3. The methods are compared and contrasted, and the advantages and disadvantages of each method are pointed out.

Finite Element and Finite Difference Methods in Electromagnetic Scattering

Finite Element and Finite Difference Methods in Electromagnetic Scattering PDF Author: M.A. Morgan
Publisher: Elsevier
ISBN: 1483289532
Category : Technology & Engineering
Languages : en
Pages : 398

Book Description
This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled scalar potentials, to the consideration of conforming boundary elements and leap-frog time-marching in transient field problems involving corners and wedges in two and three dimensions, the volume will provide an indispensable reference source for practitioners and students of computational electromagnetics.

Dissertation Abstracts International

Dissertation Abstracts International PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 824

Book Description


Integral Equations and Iteration Methods in Electromagnetic Scattering

Integral Equations and Iteration Methods in Electromagnetic Scattering PDF Author: A. B. Samokhin
Publisher: Walter de Gruyter
ISBN: 3110942046
Category : Mathematics
Languages : en
Pages : 112

Book Description


Application of Geometric Algebra to Electromagnetic Scattering

Application of Geometric Algebra to Electromagnetic Scattering PDF Author: Andrew Seagar
Publisher: Springer
ISBN: 9811000891
Category : Technology & Engineering
Languages : en
Pages : 187

Book Description
This work presents the Clifford-Cauchy-Dirac (CCD) technique for solving problems involving the scattering of electromagnetic radiation from materials of all kinds. It allows anyone who is interested to master techniques that lead to simpler and more efficient solutions to problems of electromagnetic scattering than are currently in use. The technique is formulated in terms of the Cauchy kernel, single integrals, Clifford algebra and a whole-field approach. This is in contrast to many conventional techniques that are formulated in terms of Green's functions, double integrals, vector calculus and the combined field integral equation (CFIE). Whereas these conventional techniques lead to an implementation using the method of moments (MoM), the CCD technique is implemented as alternating projections onto convex sets in a Banach space. The ultimate outcome is an integral formulation that lends itself to a more direct and efficient solution than conventionally is the case, and applies without exception to all types of materials. On any particular machine, it results in either a faster solution for a given problem or the ability to solve problems of greater complexity. The Clifford-Cauchy-Dirac technique offers very real and significant advantages in uniformity, complexity, speed, storage, stability, consistency and accuracy.

Method of Moments for 2D Scattering Problems

Method of Moments for 2D Scattering Problems PDF Author: Christophe Bourlier
Publisher: John Wiley & Sons
ISBN: 1118648684
Category : Computers
Languages : en
Pages : 122

Book Description
Electromagnetic wave scattering from randomly rough surfaces in the presence of scatterers is an active, interdisciplinary area of research with myriad practical applications in fields such as optics, acoustics, geoscience and remote sensing. In this book, the Method of Moments (MoM) is applied to compute the field scattered by scatterers such as canonical objects (cylinder or plate) or a randomly rough surface, and also by an object above or below a random rough surface. Since the problem is considered to be 2D, the integral equations (IEs) are scalar and only the TE (transverse electric) and TM (transverse magnetic) polarizations are addressed (no cross-polarizations occur). In Chapter 1, the MoM is applied to convert the IEs into a linear system, while Chapter 2 compares the MoM with the exact solution of the field scattered by a cylinder in free space, and with the Physical Optics (PO) approximation for the scattering from a plate in free space. Chapter 3 presents numerical results, obtained from the MoM, of the coherent and incoherent intensities scattered by a random rough surface and an object below a random rough surface. The final chapter presents the same results as in Chapter 3, but for an object above a random rough surface. In these last two chapters, the coupling between the two scatterers is also studied in detail by inverting the impedance matrix by blocks. Contents 1. Integral Equations for a Single Scatterer: Method of Moments and Rough Surfaces. 2. Validation of the Method of Moments for a Single Scatterer. 3. Scattering from Two Illuminated Scatterers. 4. Scattering from Two Scatterers Where Only One is Illuminated. Appendix. Matlab Codes. About the Authors Christophe Bourlier works at the IETR (Institut d’Electronique et de Télécommunications de Rennes) laboratory at Polytech Nantes (University of Nantes, France) as well as being a Researcher at the French National Center for Scientific Research (CNRS) on electromagnetic wave scattering from rough surfaces and objects for remote sensing applications and radar signatures. He is the author of more than 160 journal articles and conference papers. Nicolas Pinel is currently working as a Research Engineer at the IETR laboratory at Polytech Nantes and is about to join Alyotech Technologies in Rennes, France. His research interests are in the areas of radar and optical remote sensing, scattering and propagation. In particular, he works on asymptotic methods of electromagnetic wave scattering from random rough surfaces and layers. Gildas Kubické is in charge of the “Expertise in electroMagnetism and Computation” (EMC) laboratory at the DGA (Direction Générale de l’Armement), French Ministry of Defense, where he works in the field of radar signatures and electromagnetic stealth. His research interests include electromagnetic scattering and radar cross-section modeling.

The Finite Element Method in Electromagnetics

The Finite Element Method in Electromagnetics PDF Author: Jian-Ming Jin
Publisher: John Wiley & Sons
ISBN: 1118842022
Category : Science
Languages : en
Pages : 728

Book Description
A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The Finite Element Method in Electromagnetics, Third Edition explains the method’s processes and techniques in careful, meticulous prose and covers not only essential finite element method theory, but also its latest developments and applications—giving engineers a methodical way to quickly master this very powerful numerical technique for solving practical, often complicated, electromagnetic problems. Featuring over thirty percent new material, the third edition of this essential and comprehensive text now includes: A wider range of applications, including antennas, phased arrays, electric machines, high-frequency circuits, and crystal photonics The finite element analysis of wave propagation, scattering, and radiation in periodic structures The time-domain finite element method for analysis of wideband antennas and transient electromagnetic phenomena Novel domain decomposition techniques for parallel computation and efficient simulation of large-scale problems, such as phased-array antennas and photonic crystals Along with a great many examples, The Finite Element Method in Electromagnetics is an ideal book for engineering students as well as for professionals in the field.

Advanced Electromagnetics and Scattering Theory

Advanced Electromagnetics and Scattering Theory PDF Author: Kasra Barkeshli
Publisher: Springer
ISBN: 3319115472
Category : Technology & Engineering
Languages : en
Pages : 365

Book Description
This book present the lecture notes used in two courses that the late Professor Kasra Barkeshli had offered at Sharif University of Technology, namely, Advanced Electromagnetics and Scattering Theory. The prerequisite for the sequence is vector calculus and electromagnetic fields and waves. Some familiarity with Green's functions and integral equations is desirable but not necessary. The book provides a brief but concise introduction to classical topics in the field. It is divided into three parts including annexes. Part I covers principle of electromagnetic theory. The discussion starts with a review of the Maxwell's equations in differential and integral forms and basic boundary conditions. The solution of inhomogeneous wave equation and various field representations including Lorentz's potential functions and the Green's function method are discussed next. The solution of Helmholtz equation and wave harmonics follow. Next, the book presents plane wave propagation in dielectric and lossy media and various wave velocities. This part concludes with a general discussion of planar and circular waveguides. Part II presents basic concepts of electromagnetic scattering theory. After a brief discussion of radar equation and scattering cross section, the author reviews the canonical problems in scattering. These include the cylinder, the wedge and the sphere. The edge condition for the electromagnetic fields in the vicinity of geometric discontinuities are discussed. The author also presents the low frequency Rayleigh and Born approximations. The integral equation method for the formulation of scattering problems is presented next, followed by an introduction to scattering from periodic structures. Part III is devoted to numerical methods. It begins with finite-difference methods to solve elliptic equations, and introduces the finite-difference time-domain method for the solution of hyperbolic and parabolic equations. Next, the part turns to the method of moments for the solution of integral equations. This part ends with a short introduction to the finite-element method.

Journal of the Optical Society of America

Journal of the Optical Society of America PDF Author:
Publisher:
ISBN:
Category : Imaging systems
Languages : en
Pages : 822

Book Description


Electromagnetic Fields

Electromagnetic Fields PDF Author: Jean G. Van Bladel
Publisher: John Wiley & Sons
ISBN: 0471263885
Category : Science
Languages : en
Pages : 1188

Book Description
Professor Jean Van Bladel, an eminent researcher and educator in fundamental electromagnetic theory and its application in electrical engineering, has updated and expanded his definitive text and reference on electromagnetic fields to twice its original content. This new edition incorporates the latest methods, theory, formulations, and applications that relate to today's technologies. With an emphasis on basic principles and a focus on electromagnetic formulation and analysis, Electromagnetic Fields, Second Edition includes detailed discussions of electrostatic fields, potential theory, propagation in waveguides and unbounded space, scattering by obstacles, penetration through apertures, and field behavior at high and low frequencies.