Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1522571140
Category : Political Science
Languages : en
Pages : 2215
Book Description
The censorship and surveillance of individuals, societies, and countries have been a long-debated ethical and moral issue. In consequence, it is vital to explore this controversial topic from all angles. Censorship, Surveillance, and Privacy: Concepts, Methodologies, Tools, and Applications is a vital reference source on the social, moral, religious, and political aspects of censorship and surveillance. It also explores the techniques of technologically supported censorship and surveillance. Highlighting a range of topics such as political censorship, propaganda, and information privacy, this multi-volume book is geared towards government officials, leaders, professionals, policymakers, media specialists, academicians, and researchers interested in the various facets of censorship and surveillance.
Censorship, Surveillance, and Privacy: Concepts, Methodologies, Tools, and Applications
Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1522571140
Category : Political Science
Languages : en
Pages : 2215
Book Description
The censorship and surveillance of individuals, societies, and countries have been a long-debated ethical and moral issue. In consequence, it is vital to explore this controversial topic from all angles. Censorship, Surveillance, and Privacy: Concepts, Methodologies, Tools, and Applications is a vital reference source on the social, moral, religious, and political aspects of censorship and surveillance. It also explores the techniques of technologically supported censorship and surveillance. Highlighting a range of topics such as political censorship, propaganda, and information privacy, this multi-volume book is geared towards government officials, leaders, professionals, policymakers, media specialists, academicians, and researchers interested in the various facets of censorship and surveillance.
Publisher: IGI Global
ISBN: 1522571140
Category : Political Science
Languages : en
Pages : 2215
Book Description
The censorship and surveillance of individuals, societies, and countries have been a long-debated ethical and moral issue. In consequence, it is vital to explore this controversial topic from all angles. Censorship, Surveillance, and Privacy: Concepts, Methodologies, Tools, and Applications is a vital reference source on the social, moral, religious, and political aspects of censorship and surveillance. It also explores the techniques of technologically supported censorship and surveillance. Highlighting a range of topics such as political censorship, propaganda, and information privacy, this multi-volume book is geared towards government officials, leaders, professionals, policymakers, media specialists, academicians, and researchers interested in the various facets of censorship and surveillance.
Advances in Knowledge Discovery and Data Mining
Author: Jinho Kim
Publisher: Springer
ISBN: 331957454X
Category : Computers
Languages : en
Pages : 866
Book Description
This two-volume set, LNAI 10234 and 10235, constitutes the thoroughly refereed proceedings of the 21st Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2017, held in Jeju, South Korea, in May 2017. The 129 full papers were carefully reviewed and selected from 458 submissions. They are organized in topical sections named: classification and deep learning; social network and graph mining; privacy-preserving mining and security/risk applications; spatio-temporal and sequential data mining; clustering and anomaly detection; recommender system; feature selection; text and opinion mining; clustering and matrix factorization; dynamic, stream data mining; novel models and algorithms; behavioral data mining; graph clustering and community detection; dimensionality reduction.
Publisher: Springer
ISBN: 331957454X
Category : Computers
Languages : en
Pages : 866
Book Description
This two-volume set, LNAI 10234 and 10235, constitutes the thoroughly refereed proceedings of the 21st Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2017, held in Jeju, South Korea, in May 2017. The 129 full papers were carefully reviewed and selected from 458 submissions. They are organized in topical sections named: classification and deep learning; social network and graph mining; privacy-preserving mining and security/risk applications; spatio-temporal and sequential data mining; clustering and anomaly detection; recommender system; feature selection; text and opinion mining; clustering and matrix factorization; dynamic, stream data mining; novel models and algorithms; behavioral data mining; graph clustering and community detection; dimensionality reduction.
Anomaly Detection in Video Surveillance
Author: Xiaochun Wang
Publisher: Springer Nature
ISBN: 9819730236
Category :
Languages : en
Pages : 396
Book Description
Publisher: Springer Nature
ISBN: 9819730236
Category :
Languages : en
Pages : 396
Book Description
The TensorFlow Workshop
Author: Matthew Moocarme
Publisher: Packt Publishing Ltd
ISBN: 1800200226
Category : Computers
Languages : en
Pages : 601
Book Description
Get started with TensorFlow fundamentals to build and train deep learning models with real-world data, practical exercises, and challenging activities Key FeaturesUnderstand the fundamentals of tensors, neural networks, and deep learningDiscover how to implement and fine-tune deep learning models for real-world datasetsBuild your experience and confidence with hands-on exercises and activitiesBook Description Getting to grips with tensors, deep learning, and neural networks can be intimidating and confusing for anyone, no matter their experience level. The breadth of information out there, often written at a very high level and aimed at advanced practitioners, can make getting started even more challenging. If this sounds familiar to you, The TensorFlow Workshop is here to help. Combining clear explanations, realistic examples, and plenty of hands-on practice, it'll quickly get you up and running. You'll start off with the basics – learning how to load data into TensorFlow, perform tensor operations, and utilize common optimizers and activation functions. As you progress, you'll experiment with different TensorFlow development tools, including TensorBoard, TensorFlow Hub, and Google Colab, before moving on to solve regression and classification problems with sequential models. Building on this solid foundation, you'll learn how to tune models and work with different types of neural network, getting hands-on with real-world deep learning applications such as text encoding, temperature forecasting, image augmentation, and audio processing. By the end of this deep learning book, you'll have the skills, knowledge, and confidence to tackle your own ambitious deep learning projects with TensorFlow. What you will learnGet to grips with TensorFlow's mathematical operationsPre-process a wide variety of tabular, sequential, and image dataUnderstand the purpose and usage of different deep learning layersPerform hyperparameter-tuning to prevent overfitting of training dataUse pre-trained models to speed up the development of learning modelsGenerate new data based on existing patterns using generative modelsWho this book is for This TensorFlow book is for anyone who wants to develop their understanding of deep learning and get started building neural networks with TensorFlow. Basic knowledge of Python programming and its libraries, as well as a general understanding of the fundamentals of data science and machine learning, will help you grasp the topics covered in this book more easily.
Publisher: Packt Publishing Ltd
ISBN: 1800200226
Category : Computers
Languages : en
Pages : 601
Book Description
Get started with TensorFlow fundamentals to build and train deep learning models with real-world data, practical exercises, and challenging activities Key FeaturesUnderstand the fundamentals of tensors, neural networks, and deep learningDiscover how to implement and fine-tune deep learning models for real-world datasetsBuild your experience and confidence with hands-on exercises and activitiesBook Description Getting to grips with tensors, deep learning, and neural networks can be intimidating and confusing for anyone, no matter their experience level. The breadth of information out there, often written at a very high level and aimed at advanced practitioners, can make getting started even more challenging. If this sounds familiar to you, The TensorFlow Workshop is here to help. Combining clear explanations, realistic examples, and plenty of hands-on practice, it'll quickly get you up and running. You'll start off with the basics – learning how to load data into TensorFlow, perform tensor operations, and utilize common optimizers and activation functions. As you progress, you'll experiment with different TensorFlow development tools, including TensorBoard, TensorFlow Hub, and Google Colab, before moving on to solve regression and classification problems with sequential models. Building on this solid foundation, you'll learn how to tune models and work with different types of neural network, getting hands-on with real-world deep learning applications such as text encoding, temperature forecasting, image augmentation, and audio processing. By the end of this deep learning book, you'll have the skills, knowledge, and confidence to tackle your own ambitious deep learning projects with TensorFlow. What you will learnGet to grips with TensorFlow's mathematical operationsPre-process a wide variety of tabular, sequential, and image dataUnderstand the purpose and usage of different deep learning layersPerform hyperparameter-tuning to prevent overfitting of training dataUse pre-trained models to speed up the development of learning modelsGenerate new data based on existing patterns using generative modelsWho this book is for This TensorFlow book is for anyone who wants to develop their understanding of deep learning and get started building neural networks with TensorFlow. Basic knowledge of Python programming and its libraries, as well as a general understanding of the fundamentals of data science and machine learning, will help you grasp the topics covered in this book more easily.
Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video
Author: Olga Isupova
Publisher: Springer
ISBN: 3319755080
Category : Technology & Engineering
Languages : en
Pages : 144
Book Description
This thesis proposes machine learning methods for understanding scenes via behaviour analysis and online anomaly detection in video. The book introduces novel Bayesian topic models for detection of events that are different from typical activities and a novel framework for change point detection for identifying sudden behavioural changes. Behaviour analysis and anomaly detection are key components of intelligent vision systems. Anomaly detection can be considered from two perspectives: abnormal events can be defined as those that violate typical activities or as a sudden change in behaviour. Topic modelling and change-point detection methodologies, respectively, are employed to achieve these objectives. The thesis starts with the development of learning algorithms for a dynamic topic model, which extract topics that represent typical activities of a scene. These typical activities are used in a normality measure in anomaly detection decision-making. The book also proposes a novel anomaly localisation procedure. In the first topic model presented, a number of topics should be specified in advance. A novel dynamic nonparametric hierarchical Dirichlet process topic model is then developed where the number of topics is determined from data. Batch and online inference algorithms are developed. The latter part of the thesis considers behaviour analysis and anomaly detection within the change-point detection methodology. A novel general framework for change-point detection is introduced. Gaussian process time series data is considered. Statistical hypothesis tests are proposed for both offline and online data processing and multiple change point detection are proposed and theoretical properties of the tests are derived. The thesis is accompanied by open-source toolboxes that can be used by researchers and engineers.
Publisher: Springer
ISBN: 3319755080
Category : Technology & Engineering
Languages : en
Pages : 144
Book Description
This thesis proposes machine learning methods for understanding scenes via behaviour analysis and online anomaly detection in video. The book introduces novel Bayesian topic models for detection of events that are different from typical activities and a novel framework for change point detection for identifying sudden behavioural changes. Behaviour analysis and anomaly detection are key components of intelligent vision systems. Anomaly detection can be considered from two perspectives: abnormal events can be defined as those that violate typical activities or as a sudden change in behaviour. Topic modelling and change-point detection methodologies, respectively, are employed to achieve these objectives. The thesis starts with the development of learning algorithms for a dynamic topic model, which extract topics that represent typical activities of a scene. These typical activities are used in a normality measure in anomaly detection decision-making. The book also proposes a novel anomaly localisation procedure. In the first topic model presented, a number of topics should be specified in advance. A novel dynamic nonparametric hierarchical Dirichlet process topic model is then developed where the number of topics is determined from data. Batch and online inference algorithms are developed. The latter part of the thesis considers behaviour analysis and anomaly detection within the change-point detection methodology. A novel general framework for change-point detection is introduced. Gaussian process time series data is considered. Statistical hypothesis tests are proposed for both offline and online data processing and multiple change point detection are proposed and theoretical properties of the tests are derived. The thesis is accompanied by open-source toolboxes that can be used by researchers and engineers.
Beginning Anomaly Detection Using Python-Based Deep Learning
Author: Sridhar Alla
Publisher: Apress
ISBN: 1484251776
Category : Computers
Languages : en
Pages : 427
Book Description
Utilize this easy-to-follow beginner's guide to understand how deep learning can be applied to the task of anomaly detection. Using Keras and PyTorch in Python, the book focuses on how various deep learning models can be applied to semi-supervised and unsupervised anomaly detection tasks. This book begins with an explanation of what anomaly detection is, what it is used for, and its importance. After covering statistical and traditional machine learning methods for anomaly detection using Scikit-Learn in Python, the book then provides an introduction to deep learning with details on how to build and train a deep learning model in both Keras and PyTorch before shifting the focus to applications of the following deep learning models to anomaly detection: various types of Autoencoders, Restricted Boltzmann Machines, RNNs & LSTMs, and Temporal Convolutional Networks. The book explores unsupervised and semi-supervised anomaly detection along with the basics of time series-based anomaly detection. By the end of the book you will have a thorough understanding of the basic task of anomaly detection as well as an assortment of methods to approach anomaly detection, ranging from traditional methods to deep learning. Additionally, you are introduced to Scikit-Learn and are able to create deep learning models in Keras and PyTorch. What You Will LearnUnderstand what anomaly detection is and why it is important in today's world Become familiar with statistical and traditional machine learning approaches to anomaly detection using Scikit-Learn Know the basics of deep learning in Python using Keras and PyTorch Be aware of basic data science concepts for measuring a model's performance: understand what AUC is, what precision and recall mean, and more Apply deep learning to semi-supervised and unsupervised anomaly detection Who This Book Is For Data scientists and machine learning engineers interested in learning the basics of deep learning applications in anomaly detection
Publisher: Apress
ISBN: 1484251776
Category : Computers
Languages : en
Pages : 427
Book Description
Utilize this easy-to-follow beginner's guide to understand how deep learning can be applied to the task of anomaly detection. Using Keras and PyTorch in Python, the book focuses on how various deep learning models can be applied to semi-supervised and unsupervised anomaly detection tasks. This book begins with an explanation of what anomaly detection is, what it is used for, and its importance. After covering statistical and traditional machine learning methods for anomaly detection using Scikit-Learn in Python, the book then provides an introduction to deep learning with details on how to build and train a deep learning model in both Keras and PyTorch before shifting the focus to applications of the following deep learning models to anomaly detection: various types of Autoencoders, Restricted Boltzmann Machines, RNNs & LSTMs, and Temporal Convolutional Networks. The book explores unsupervised and semi-supervised anomaly detection along with the basics of time series-based anomaly detection. By the end of the book you will have a thorough understanding of the basic task of anomaly detection as well as an assortment of methods to approach anomaly detection, ranging from traditional methods to deep learning. Additionally, you are introduced to Scikit-Learn and are able to create deep learning models in Keras and PyTorch. What You Will LearnUnderstand what anomaly detection is and why it is important in today's world Become familiar with statistical and traditional machine learning approaches to anomaly detection using Scikit-Learn Know the basics of deep learning in Python using Keras and PyTorch Be aware of basic data science concepts for measuring a model's performance: understand what AUC is, what precision and recall mean, and more Apply deep learning to semi-supervised and unsupervised anomaly detection Who This Book Is For Data scientists and machine learning engineers interested in learning the basics of deep learning applications in anomaly detection
Outlier Analysis
Author: Charu C. Aggarwal
Publisher: Springer
ISBN: 3319475789
Category : Computers
Languages : en
Pages : 481
Book Description
This book provides comprehensive coverage of the field of outlier analysis from a computer science point of view. It integrates methods from data mining, machine learning, and statistics within the computational framework and therefore appeals to multiple communities. The chapters of this book can be organized into three categories: Basic algorithms: Chapters 1 through 7 discuss the fundamental algorithms for outlier analysis, including probabilistic and statistical methods, linear methods, proximity-based methods, high-dimensional (subspace) methods, ensemble methods, and supervised methods. Domain-specific methods: Chapters 8 through 12 discuss outlier detection algorithms for various domains of data, such as text, categorical data, time-series data, discrete sequence data, spatial data, and network data. Applications: Chapter 13 is devoted to various applications of outlier analysis. Some guidance is also provided for the practitioner. The second edition of this book is more detailed and is written to appeal to both researchers and practitioners. Significant new material has been added on topics such as kernel methods, one-class support-vector machines, matrix factorization, neural networks, outlier ensembles, time-series methods, and subspace methods. It is written as a textbook and can be used for classroom teaching.
Publisher: Springer
ISBN: 3319475789
Category : Computers
Languages : en
Pages : 481
Book Description
This book provides comprehensive coverage of the field of outlier analysis from a computer science point of view. It integrates methods from data mining, machine learning, and statistics within the computational framework and therefore appeals to multiple communities. The chapters of this book can be organized into three categories: Basic algorithms: Chapters 1 through 7 discuss the fundamental algorithms for outlier analysis, including probabilistic and statistical methods, linear methods, proximity-based methods, high-dimensional (subspace) methods, ensemble methods, and supervised methods. Domain-specific methods: Chapters 8 through 12 discuss outlier detection algorithms for various domains of data, such as text, categorical data, time-series data, discrete sequence data, spatial data, and network data. Applications: Chapter 13 is devoted to various applications of outlier analysis. Some guidance is also provided for the practitioner. The second edition of this book is more detailed and is written to appeal to both researchers and practitioners. Significant new material has been added on topics such as kernel methods, one-class support-vector machines, matrix factorization, neural networks, outlier ensembles, time-series methods, and subspace methods. It is written as a textbook and can be used for classroom teaching.
Cognitive Computing and Information Processing
Author: T.N. Nagabhushan
Publisher: Springer
ISBN: 9789811090585
Category : Computers
Languages : en
Pages : 502
Book Description
This book constitutes the refereed proceedings of the Third International Conference on Cognitive Computing and Information Processing, CCIP 2017, held in Bengaluru, India, in December 2017. The 43 revised full papers presented were carefully reviewed and selected from 130 submissions. The papers are organized in topical sections on cognitive computing in medical information processing; cognitive computing and its applications; cognitive computing in video analytics.
Publisher: Springer
ISBN: 9789811090585
Category : Computers
Languages : en
Pages : 502
Book Description
This book constitutes the refereed proceedings of the Third International Conference on Cognitive Computing and Information Processing, CCIP 2017, held in Bengaluru, India, in December 2017. The 43 revised full papers presented were carefully reviewed and selected from 130 submissions. The papers are organized in topical sections on cognitive computing in medical information processing; cognitive computing and its applications; cognitive computing in video analytics.
First International Conference on Artificial Intelligence and Cognitive Computing
Author: Raju Surampudi Bapi
Publisher: Springer
ISBN: 9811315809
Category : Technology & Engineering
Languages : en
Pages : 704
Book Description
This book presents original research works by researchers, engineers and practitioners in the field of artificial intelligence and cognitive computing. The book is divided into two parts, the first of which focuses on artificial intelligence (AI), knowledge representation, planning, learning, scheduling, perception-reactive AI systems, evolutionary computing and other topics related to intelligent systems and computational intelligence. In turn, the second part focuses on cognitive computing, cognitive science and cognitive informatics. It also discusses applications of cognitive computing in medical informatics, structural health monitoring, computational intelligence, intelligent control systems, bio-informatics, smart manufacturing, smart grids, image/video processing, video analytics, medical image and signal processing, and knowledge engineering, as well as related applications.
Publisher: Springer
ISBN: 9811315809
Category : Technology & Engineering
Languages : en
Pages : 704
Book Description
This book presents original research works by researchers, engineers and practitioners in the field of artificial intelligence and cognitive computing. The book is divided into two parts, the first of which focuses on artificial intelligence (AI), knowledge representation, planning, learning, scheduling, perception-reactive AI systems, evolutionary computing and other topics related to intelligent systems and computational intelligence. In turn, the second part focuses on cognitive computing, cognitive science and cognitive informatics. It also discusses applications of cognitive computing in medical informatics, structural health monitoring, computational intelligence, intelligent control systems, bio-informatics, smart manufacturing, smart grids, image/video processing, video analytics, medical image and signal processing, and knowledge engineering, as well as related applications.
Computational Vision and Bio-Inspired Computing
Author: S. Smys
Publisher: Springer Nature
ISBN: 9813368624
Category : Technology & Engineering
Languages : en
Pages : 871
Book Description
This book includes selected papers from the 4th International Conference on Computational Vision and Bio Inspired Computing (ICCVBIC 2020), held in Coimbatore, India, from November 19 to 20, 2020. This proceedings book presents state-of-the-art research innovations in computational vision and bio-inspired techniques. The book reveals the theoretical and practical aspects of bio-inspired computing techniques, like machine learning, sensor-based models, evolutionary optimization and big data modeling and management that make use of effectual computing processes in the bio-inspired systems. As such it contributes to the novel research that focuses on developing bio-inspired computing solutions for various domains, such as human–computer interaction, image processing, sensor-based single processing, recommender systems and facial recognition, which play an indispensable part in smart agriculture, smart city, biomedical and business intelligence applications.
Publisher: Springer Nature
ISBN: 9813368624
Category : Technology & Engineering
Languages : en
Pages : 871
Book Description
This book includes selected papers from the 4th International Conference on Computational Vision and Bio Inspired Computing (ICCVBIC 2020), held in Coimbatore, India, from November 19 to 20, 2020. This proceedings book presents state-of-the-art research innovations in computational vision and bio-inspired techniques. The book reveals the theoretical and practical aspects of bio-inspired computing techniques, like machine learning, sensor-based models, evolutionary optimization and big data modeling and management that make use of effectual computing processes in the bio-inspired systems. As such it contributes to the novel research that focuses on developing bio-inspired computing solutions for various domains, such as human–computer interaction, image processing, sensor-based single processing, recommender systems and facial recognition, which play an indispensable part in smart agriculture, smart city, biomedical and business intelligence applications.