Analysis of the Chemical and Photochemical Aging of Organic Aerosol Particles PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Analysis of the Chemical and Photochemical Aging of Organic Aerosol Particles PDF full book. Access full book title Analysis of the Chemical and Photochemical Aging of Organic Aerosol Particles by Anthony Gomez. Download full books in PDF and EPUB format.

Analysis of the Chemical and Photochemical Aging of Organic Aerosol Particles

Analysis of the Chemical and Photochemical Aging of Organic Aerosol Particles PDF Author: Anthony Gomez
Publisher:
ISBN:
Category : Air
Languages : en
Pages : 228

Book Description


Analysis of the Chemical and Photochemical Aging of Organic Aerosol Particles

Analysis of the Chemical and Photochemical Aging of Organic Aerosol Particles PDF Author: Anthony Gomez
Publisher:
ISBN:
Category : Air
Languages : en
Pages : 228

Book Description


Optical Properties, Chemical Composition, and Aqueous Photochemistry of Secondary Organic Aerosol

Optical Properties, Chemical Composition, and Aqueous Photochemistry of Secondary Organic Aerosol PDF Author: Dian Elizabeth Romonosky
Publisher:
ISBN: 9781369227819
Category :
Languages : en
Pages : 199

Book Description
A large fraction of organic aerosol particles are formed as secondary organic aerosol (SOA) resulting from the condensation of partially oxidized biogenic and anthropogenic volatile organic compounds (VOCs) with gas phase oxidants such as O3, OH, NOx, and NO3. An additional pathway for SOA formation is by the photochemical aqueous processing of VOC occurring inside cloud and fog droplets, followed by droplet evaporation. Once formed, SOA can age through heterogeneous oxidation and fog photochemical processes involving the hydroxyl radical (OH) as well as various other oxidants in the atmosphere. In addition to condensed phase oxidation, SOA can also age in the atmosphere upon exposure to radiation, for many of these organic compounds are photolabile and can degrade through direct photolysis, wherein the compounds absorb radiation and break into products, and indirect photolysis, wherein absorption of solar radiation initiates chemistry through the production of non-selective oxidants such as OH. These photochemical aging processes have the potential to be on time scales that are comparable to the typical lifetimes of droplets (hours) and particles (days), making them relevant to study further for both climate and health reasons. This dissertation presents a systematic investigation of the optical properties, molecular composition, and the extent of photochemical processing in different types of SOA from various biogenic and anthropogenic VOC precursors. Chamber- or flowtube-generated SOA is made and then analyzed using high-resolution mass spectrometry (HR-MS) to observe the extent of change in the molecular level composition of the material before and after aqueous photolysis. Significant differences in the molecular composition between biogenic and anthropogenic SOA were observed, while the composition further evolved during photolysis. To study the optical properties and lifetimes of organic aerosol, spectroscopy tools such as UV-Vis is utilized. Results of this study suggest that the condensed phase photolysis of SOA can occur with effective lifetimes ranging from minutes to hours, and therefore represents a potentially important aging mechanism for SOA. The outcome of this dissertation will be improved understanding of the role of condensed-phase photochemistry in chemical aging of aerosol particles and cloud droplets.

Atmospheric and Aerosol Chemistry

Atmospheric and Aerosol Chemistry PDF Author: V. Faye McNeill
Publisher: Springer
ISBN: 3642412157
Category : Science
Languages : en
Pages : 267

Book Description
Christian George, Barbara D’Anna, Hartmut Herrmann, Christian Weller, Veronica Vaida, D. J. Donaldson, Thorsten Bartels-Rausch, Markus Ammann - Emerging Areas in Atmospheric Photochemistry. Lisa Whalley, Daniel Stone, Dwayne Heard - New Insights into the Tropospheric Oxidation of Isoprene: Combining Field Measurements, Laboratory Studies, Chemical Modelling and Quantum Theory. Neil M. Donahue, Allen L. Robinson, Erica R. Trump, Ilona Riipinen, Jesse H. Kroll - Volatility and Aging of Atmospheric Organic Aerosol. P. A. Ariya, G. Kos, R. Mortazavi, E. D. Hudson, V. Kanthasamy, N. Eltouny, J. Sun, C. Wilde - Bio-Organic Materials in the Atmosphere and Snow: Measurement and Characterization. V. Faye McNeill, Neha Sareen, Allison N. Schwier - Surface-Active Organics in Atmospheric Aerosols.

The Aging of Organic Aerosol in the Atmosphere

The Aging of Organic Aerosol in the Atmosphere PDF Author: Sean Herbert Kessler
Publisher:
ISBN:
Category :
Languages : en
Pages : 134

Book Description
The immense chemical complexity of atmospheric organic particulate matter ("aerosol") has left the general field of condensed-phase atmospheric organic chemistry relatively under-developed when compared with either gas-phase chemistry or the formation of inorganic compounds. In this work, we endeavor to improve the general understanding of the narrow class of oxidation reactions that occur at the interface between the particle surface and the gas-phase. The heterogeneous oxidation of pure erythritol (C4H1 00 4 ) and levoglucosan (C6H1 00 5) particles by hydroxyl radical (OH) was studied first in order to evaluate the effects of atmospheric aging on the mass and chemical composition of atmospheric organic aerosol, particularly that resembling fresh secondary organic aerosol (SOA) and biomass-burning organic aerosol (BBOA). In contrast to what is generally observed for the heterogeneous oxidation of reduced organics, substantial volatilization is observed in both systems. As a continuation of the heterogeneous oxidation experiments, we also measure the kinetics and products of the aging of highly oxidized organic aerosol, in which submicron particles composed of model oxidized organics -- 1,2,3,4-butanetetracarboxylic acid (C8H100 8), citric acid (C6 H8 0 7), tartaric acid (C4H6 0 6 ), and Suwannee River fulvic acid -- were oxidized by gas-phase OH in the same flow reactor, and the masses and elemental composition of the particles were monitored as a function of OH exposure. In contrast to studies of the less-oxidized model systems, particle mass did not decrease significantly with heterogeneous oxidation, although substantial chemical transformations were observed and characterized. Lastly, the immense complexity inherent in the formation of SOA -- due primarily to the large number of oxidation steps and reaction pathways involved -- has limited the detailed understanding of its underlying chemistry. In order to simplify this inherent complexity, we give over the last portion of this thesis to a novel technique for the formation of SOA through the photolysis of gas-phase alkyl iodides, which generates organic peroxy radicals of known structure. In contrast to standard OH-initiated oxidation experiments, photolytically initiated oxidation forms a limited number of products via a single reactive step. The system in which the photolytic SOA is formed is also repurposed as a generator of organic aerosol for input into a secondary reaction chamber, where the organic particles undergo additional aging by the heterogeneous oxidation mechanism already discussed. Particles exiting this reactor are observed to have become more dramatically oxidized than comparable systems containing SOA formed by gas-phase alkanes undergoing "normal" photo-oxidation by OH, suggesting simultaneously the utility of gas-phase precursor photolysis as an effective experimental platform for studying directly the chemistry involved in atmospheric aerosol formation and also the possibility that heterogeneous processes may play a more significant role in the atmosphere than what is predicted from chamber experiments. Consideration is given for the application of these results to larger-scale experiments, models, and conceptual frameworks.

Multiphase Environmental Chemistry in the Atmosphere

Multiphase Environmental Chemistry in the Atmosphere PDF Author: Sherri W. Hunt
Publisher: ACS Symposium
ISBN: 9780841233638
Category : Science
Languages : en
Pages : 0

Book Description
This book highlights new cross-disciplinary advances in aerosol chemistry that involve more than one phase, for example, unique chemical processes occurring on gas-solid and liquid-solid interfaces.

Chemistry of Secondary Organic Aerosol

Chemistry of Secondary Organic Aerosol PDF Author: Lindsay Diana Yee
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 466

Book Description
The photooxidation of volatile organic compounds (VOCs) in the atmosphere can lead to the formation of secondary organic aerosol (SOA), a major component of fine particulate matter. Improvements to air quality require insight into the many reactive intermediates that lead to SOA formation, of which only a small fraction have been measured at the molecular level. This thesis describes the chemistry of secondary organic aerosol (SOA) formation from several atmospherically relevant hydrocarbon precursors. Photooxidation experiments of methoxyphenol and phenolic compounds and C12 alkanes were conducted in the Caltech Environmental Chamber. These experiments include the first photooxidation studies of these precursors run under sufficiently low NOx levels, such that RO2 + HO2 chemistry dominates, an important chemical regime in the atmosphere. Using online Chemical Ionization Mass Spectrometery (CIMS), key gas-phase intermediates that lead to SOA formation in these systems were identified. With complementary particle-phase analyses, chemical mechanisms elucidating the SOA formation from these compounds are proposed. Three methoxyphenol species (phenol, guaiacol, and syringol) were studied to model potential photooxidation schemes of biomass burning intermediates. SOA yields (ratio of mass of SOA formed to mass of primary organic reacted) exceeding 25% are observed. Aerosol growth is rapid and linear with the organic conversion, consistent with the formation of essentially non-volatile products. Gas and aerosol-phase oxidation products from the guaiacol system show that the chemical mechanism consists of highly oxidized aromatic species in the particle phase. Syringol SOA yields are lower than that of phenol and guaiacol, likely due to unique chemistry dependent on methoxy group position. The photooxidation of several C12 alkanes of varying structure n-dodecane, 2-methylundecane, cyclododecane, and hexylcyclohexane) were run under extended OH exposure to investigate the effect of molecular structure on SOA yields and photochemical aging. Peroxyhemiacetal formation from the reactions of several multifunctional hydroperoxides and aldehyde intermediates was found to be central to organic growth in all systems, and SOA yields increased with cyclic character of the starting hydrocarbon. All of these studies provide direction for future experiments and modeling in order to lessen outstanding discrepancies between predicted and measured SOA.

Chemical Transformation of Biomass Burning Organic Aerosols Due to Photolytic Aging

Chemical Transformation of Biomass Burning Organic Aerosols Due to Photolytic Aging PDF Author: Hongmin Yu
Publisher:
ISBN:
Category : Atmospheric aerosols
Languages : en
Pages : 28

Book Description
Biomass burning organic aerosol (BBOA), organic aerosol that derived from burning of biomass fuels, has been a major research focus because of its special role in the global budget of atmospheric chemistry and radiative forcing. Due to its chemical complexity, there are gaps in our knowledge about the chemical aging processes of BBOA in the atmosphere. Since many photochemical aging experiments on BBOA are usually conducted for only a few hours, less is known about the photo-aging pathways of the system over an extended timescale. This study presents the analyses of three BBOA filter samples derived from three types of fuels that were photolytically aged over a timeframe of up to ~3.5 days. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Offline-Aerosol Mass Spectrometry (Offline-AMS) were used to measure the chemical changes in the aqueous sample extracts and evaluate how those changes can relate to their specific fuel type. This study finds an overall increase in oxidation states and decrease in the nitro group (NO2) compounds in the samples. The level of levoglucosan, a tracer organic species of BBOA, is also observed to decrease in the sample mixture due to photolysis alone for the first time. Several unique chemical characteristics were observed for each sample, which possibly relate to their individual fuel type. In order to further support those observations and obtain a full picture of the chemical compositions of the samples, future studies will focus on examining the acetonitrile extracts of our samples, investigating the corresponding on-line AMS data set, and applying more analytical methods to the sample extracts.

Composition and Photochemistry of Anthropogenic and Biogenic Organic Aerosols

Composition and Photochemistry of Anthropogenic and Biogenic Organic Aerosols PDF Author: Sandra Louise Blair
Publisher:
ISBN: 9781339820262
Category :
Languages : en
Pages : 228

Book Description
Aerosols can substantially impact human health, atmospheric chemistry, and climate. The composition and photochemistry of a variety of anthropogenic and biogenic primary and secondary organic aerosols (POA and SOA) have yet to be fully characterized. The composition of organic aerosols is extremely complex - they contain a variety of highly oxidized, multifunctional, low vapor pressure organic compounds. The primary focus of this thesis is on the molecular characterization of organic aerosols that are not well understood or have not been studied before, such as primary emissions from electronic cigarettes, iron (III) mediated SOA, and photooxidized biodiesel and diesel fuel SOA. Another focus of this dissertation is the effect of direct photochemical aging on the composition of organic aerosol. Direct photolysis experiments were first applied to a system that is known to have a photolabile composition, alpha-pinene ozonolysis SOA, such that characterization of a photochemical effect would be possible to quantify. Photolysis of more complex SOA that have not been studied before, photooxidized biodiesel and diesel fuel SOA, were also investigated in this thesis. Advanced high resolution mass spectrometry techniques were used in the molecular characterization of organic aerosols, including nano-Desorption Electrospray Ionization Mass Spectrometry (nano-DESI) and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR). An additional suite of online instrumentation was used to measure gas-phase composition, particle-phase composition, particle size and concentration, and absorption properties: Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS), Aerosol Mass Spectrometry (ToF-AMS), Scanning Mobility Particle Sizing (SMPS), and UV-vis spectroscopy. The molecular analysis of these aerosols provides valuable insight to the formation and photochemical behavior of unexpected, polymeric, light absorbing, and unique organosulfur species.

Chemical Kinetics and Mechanisms of Unsaturated Organic Aerosol Oxidation

Chemical Kinetics and Mechanisms of Unsaturated Organic Aerosol Oxidation PDF Author: Theodora Nah
Publisher:
ISBN:
Category :
Languages : en
Pages : 137

Book Description
Understanding the heterogeneous oxidation of organic particulate matter ("aerosol") is an active area of current research in atmospheric and combustion chemistry. The chemical evolution of organic aerosol is complex and dynamic since it can undergo multiple oxidation reactions with gas phase oxidants to form a mixture of different generations of oxidation products that control the average aerosol mass and volatility. In many of these systems, hydrocarbon free radicals, formed by reaction with gas phase oxidants, play key roles as initiators, propagators and terminators of surface reactions. This dissertation presents a detailed study of the reaction kinetics and mechanisms of the heterogeneous oxidation of unsaturated organic aerosol, and aims to provide new molecular and mechanistic insights into the reaction pathways in heterogeneous organic aerosol oxidation. The heterogeneous oxidation of unsaturated fatty acid (oleic acid C18H34O2, linoleic acid C18H32O2 and linolenic acid C18H30O2) aerosol by hydroxyl (OH) radicals is first studied in Chapter 2 to explore how surface OH addition reactions initiate chain reactions that rapidly transform the chemical composition of unsaturated organic aerosol. Oleic acid, linoleic acid and linolenic acid have the same linear C18 carbon backbone structure with one, two and three C=C double bonds, respectively. By studying carboxylic acids with different numbers of C=C double bonds, the role that multiple reactive sites plays in controlling reaction rates can be observed. The kinetic parameter of interest in these studies is the effective uptake coefficient, defined as the number of particle phase unsaturated fatty acid molecules reacted per OH-particle collision. The effective uptake coefficients for the unsaturated fatty acids are larger than unity, providing clear evidence for particle-phase secondary chain chemistry. The effective uptake coefficients for the unsaturated fatty acids decrease with increasing O2 concentration, indicating that O2 promotes chain termination in the unsaturated fatty acid reactions. The kinetics and products of squalene (a C30 branched alkene with 6 C=C double bonds) oxidation are compared to that of the unsaturated fatty acids in Chapters 3 and 4 to understand how molecular structure and chemical functionality influence reaction rates and mechanisms. The squalene effective uptake coefficient, which is also larger than one, is smaller than that of linoleic acid and linolenic acid despite the larger number of C=C double bonds in squalene. In contrast to the unsaturated fatty acids, the squalene effective uptake coefficient increases with O2 concentration, indicating that O2 promotes chain propagation in the squalene reaction. Elemental and product analysis of squalene aerosol shows that O2 promotes particle volatilization in the squalene reaction, suggesting that fragmentation reactions are important when O2 is present in the OH oxidation of branched unsaturated organic aerosol. In contrast, elemental and product analysis of linoleic acid aerosol shows that O2 does not influence the rate of particle volatilization in the linoleic acid reaction, suggesting that O2 does not alter the relative importance of fragmentation reactions in the OH oxidation of linear unsaturated organic aerosol. Lastly, depending on the aerosol phase (e.g. solid and semi-solid) and the timescale for homogeneous mixing within the aerosol particle, the chemical composition may vary spatially within an aerosol particle. This necessitates the need for new techniques to characterize the interfacial chemical composition of aerosol particles. In the last portion of the dissertation, direct analysis in real time mass spectrometry (DART-MS) is used to analyze the surface chemical composition of nanometer-sized organic aerosol particles in real time at atmospheric pressure. By introducing a stream of aerosol particles in between the DART ionization source and the atmospheric pressure inlet of the mass spectrometer, the aerosol particles are exposed to a thermal flow of helium or nitrogen gas containing some fraction of metastable helium atoms or nitrogen molecules. In this configuration, the molecular constituents of organic aerosol particles are desorbed, ionized and detected with reduced molecular ion fragmentation, allowing for compositional identification. The reaction of ozone with sub-micron oleic acid particles is also measured to demonstrate the ability of DART-MS to identify products and quantify reaction rates in a heterogeneous reaction.

Atmospheric Aerosols

Atmospheric Aerosols PDF Author: Claudio Tomasi
Publisher: John Wiley & Sons
ISBN: 3527336451
Category : Science
Languages : en
Pages : 706

Book Description
Ein Blick auf die morphologischen, physikalischen und chemischen Eigenschaften von Aerosolen aus den unterschiedlichsten natürlichen und anthropogenen Quellen trägt zum besseren Verständnis der Rolle bei, die Aerosolpartikel bei der Streuung und Absorption kurz- und langwelliger Strahlung spielen. Dieses Fachbuch bietet Informationen, die sonst schwer zu finden sind, und vermittelt ausführlich die Kenntnisse, die erforderlich sind, um die mikrophysikalischen, chemischen und Strahlungsparameter zu charakterisieren, die bei der Wechselwirkung von Sonnen- und Erdstrahlen so überaus wichtig sind. Besonderes Augenmerk liegt auf den indirekten Auswirkungen von Aerosolen auf das Klima im Rahmen des komplexen Systems aus Aerosolen, Wolken und der Atmosphäre. Auch geht es vorrangig um die Wirkungen natürlicher und anthropogener Aerosole auf die Luftqualität und die Umwelt, auf die menschliche Gesundheit und unser kulturelles Erbe. Mit einem durchgängig lösungsorientierten Ansatz werden nicht nur die Probleme und Gefahren dieser Aerosole behandelt, sondern auch praktikable Lösungswege aufgezeigt.