Author: El-Maati Ouhabaz
Publisher: Princeton University Press
ISBN: 1400826489
Category : Mathematics
Languages : en
Pages : 296
Book Description
This is the first comprehensive reference published on heat equations associated with non self-adjoint uniformly elliptic operators. The author provides introductory materials for those unfamiliar with the underlying mathematics and background needed to understand the properties of heat equations. He then treats Lp properties of solutions to a wide class of heat equations that have been developed over the last fifteen years. These primarily concern the interplay of heat equations in functional analysis, spectral theory and mathematical physics. This book addresses new developments and applications of Gaussian upper bounds to spectral theory. In particular, it shows how such bounds can be used in order to prove Lp estimates for heat, Schrödinger, and wave type equations. A significant part of the results have been proved during the last decade. The book will appeal to researchers in applied mathematics and functional analysis, and to graduate students who require an introductory text to sesquilinear form techniques, semigroups generated by second order elliptic operators in divergence form, heat kernel bounds, and their applications. It will also be of value to mathematical physicists. The author supplies readers with several references for the few standard results that are stated without proofs.
Analysis of Heat Equations on Domains. (LMS-31)
Random Walk and the Heat Equation
Author: Gregory F. Lawler
Publisher: American Mathematical Soc.
ISBN: 0821848291
Category : Mathematics
Languages : en
Pages : 170
Book Description
The heat equation can be derived by averaging over a very large number of particles. Traditionally, the resulting PDE is studied as a deterministic equation, an approach that has brought many significant results and a deep understanding of the equation and its solutions. By studying the heat equation and considering the individual random particles, however, one gains further intuition into the problem. While this is now standard for many researchers, this approach is generally not presented at the undergraduate level. In this book, Lawler introduces the heat equations and the closely related notion of harmonic functions from a probabilistic perspective. The theme of the first two chapters of the book is the relationship between random walks and the heat equation. This first chapter discusses the discrete case, random walk and the heat equation on the integer lattice; and the second chapter discusses the continuous case, Brownian motion and the usual heat equation. Relationships are shown between the two. For example, solving the heat equation in the discrete setting becomes a problem of diagonalization of symmetric matrices, which becomes a problem in Fourier series in the continuous case. Random walk and Brownian motion are introduced and developed from first principles. The latter two chapters discuss different topics: martingales and fractal dimension, with the chapters tied together by one example, a random Cantor set. The idea of this book is to merge probabilistic and deterministic approaches to heat flow. It is also intended as a bridge from undergraduate analysis to graduate and research perspectives. The book is suitable for advanced undergraduates, particularly those considering graduate work in mathematics or related areas.
Publisher: American Mathematical Soc.
ISBN: 0821848291
Category : Mathematics
Languages : en
Pages : 170
Book Description
The heat equation can be derived by averaging over a very large number of particles. Traditionally, the resulting PDE is studied as a deterministic equation, an approach that has brought many significant results and a deep understanding of the equation and its solutions. By studying the heat equation and considering the individual random particles, however, one gains further intuition into the problem. While this is now standard for many researchers, this approach is generally not presented at the undergraduate level. In this book, Lawler introduces the heat equations and the closely related notion of harmonic functions from a probabilistic perspective. The theme of the first two chapters of the book is the relationship between random walks and the heat equation. This first chapter discusses the discrete case, random walk and the heat equation on the integer lattice; and the second chapter discusses the continuous case, Brownian motion and the usual heat equation. Relationships are shown between the two. For example, solving the heat equation in the discrete setting becomes a problem of diagonalization of symmetric matrices, which becomes a problem in Fourier series in the continuous case. Random walk and Brownian motion are introduced and developed from first principles. The latter two chapters discuss different topics: martingales and fractal dimension, with the chapters tied together by one example, a random Cantor set. The idea of this book is to merge probabilistic and deterministic approaches to heat flow. It is also intended as a bridge from undergraduate analysis to graduate and research perspectives. The book is suitable for advanced undergraduates, particularly those considering graduate work in mathematics or related areas.
Applied Partial Differential Equations
Author: J. David Logan
Publisher: Springer Science & Business Media
ISBN: 1468405330
Category : Mathematics
Languages : en
Pages : 193
Book Description
This textbook is for the standard, one-semester, junior-senior course that often goes by the title "Elementary Partial Differential Equations" or "Boundary Value Problems;' The audience usually consists of stu dents in mathematics, engineering, and the physical sciences. The topics include derivations of some of the standard equations of mathemati cal physics (including the heat equation, the· wave equation, and the Laplace's equation) and methods for solving those equations on bounded and unbounded domains. Methods include eigenfunction expansions or separation of variables, and methods based on Fourier and Laplace transforms. Prerequisites include calculus and a post-calculus differential equations course. There are several excellent texts for this course, so one can legitimately ask why one would wish to write another. A survey of the content of the existing titles shows that their scope is broad and the analysis detailed; and they often exceed five hundred pages in length. These books gen erally have enough material for two, three, or even four semesters. Yet, many undergraduate courses are one-semester courses. The author has often felt that students become a little uncomfortable when an instructor jumps around in a long volume searching for the right topics, or only par tially covers some topics; but they are secure in completely mastering a short, well-defined introduction. This text was written to proVide a brief, one-semester introduction to partial differential equations.
Publisher: Springer Science & Business Media
ISBN: 1468405330
Category : Mathematics
Languages : en
Pages : 193
Book Description
This textbook is for the standard, one-semester, junior-senior course that often goes by the title "Elementary Partial Differential Equations" or "Boundary Value Problems;' The audience usually consists of stu dents in mathematics, engineering, and the physical sciences. The topics include derivations of some of the standard equations of mathemati cal physics (including the heat equation, the· wave equation, and the Laplace's equation) and methods for solving those equations on bounded and unbounded domains. Methods include eigenfunction expansions or separation of variables, and methods based on Fourier and Laplace transforms. Prerequisites include calculus and a post-calculus differential equations course. There are several excellent texts for this course, so one can legitimately ask why one would wish to write another. A survey of the content of the existing titles shows that their scope is broad and the analysis detailed; and they often exceed five hundred pages in length. These books gen erally have enough material for two, three, or even four semesters. Yet, many undergraduate courses are one-semester courses. The author has often felt that students become a little uncomfortable when an instructor jumps around in a long volume searching for the right topics, or only par tially covers some topics; but they are secure in completely mastering a short, well-defined introduction. This text was written to proVide a brief, one-semester introduction to partial differential equations.
The One-Dimensional Heat Equation
Author: John Rozier Cannon
Publisher: Cambridge University Press
ISBN: 9780521302432
Category : Mathematics
Languages : en
Pages : 522
Book Description
This is a version of Gevrey's classical treatise on the heat equations. Included in this volume are discussions of initial and/or boundary value problems, numerical methods, free boundary problems and parameter determination problems. The material is presented as a monograph and/or information source book. After the first six chapters of standard classical material, each chapter is written as a self-contained unit except for an occasional reference to elementary definitions, theorems and lemmas in previous chapters.
Publisher: Cambridge University Press
ISBN: 9780521302432
Category : Mathematics
Languages : en
Pages : 522
Book Description
This is a version of Gevrey's classical treatise on the heat equations. Included in this volume are discussions of initial and/or boundary value problems, numerical methods, free boundary problems and parameter determination problems. The material is presented as a monograph and/or information source book. After the first six chapters of standard classical material, each chapter is written as a self-contained unit except for an occasional reference to elementary definitions, theorems and lemmas in previous chapters.
Mathematical Analysis Tools for Engineering
Author: franco tomarelli
Publisher: Società Editrice Esculapio
ISBN:
Category : Mathematics
Languages : en
Pages : 528
Book Description
This book is an introduction to the study of ordinary differential equations and partial differential equations, ranging from elementary techniques to advanced tools. The presentation focusses on initial value problems, boundary value problems, equations with delayed argument and analysis of periodic solutions: main goals are the analysis of diffusion equation, wave equation, Laplace equation and signals. The study of relevant examples of differential models highlights the notion of well-posed problem. An expanded tutorial chapter collects the topics from basic undergraduate calculus that are used in subsequent chapters. A wide exposition concerning classical methods for solving problems related to differential equations is available: mainly separation of variables and Fourier series, with basic worked exercises. A whole chapter deals with the analytic functions of complex variable. An introduction to function spaces, distributions and basic notions of functional analysis is present. Several chapters are devoted to Fourier and Laplace transforms methods to solve boundary value problems and initial value problems for differential equations. Tools for the analysis appear gradually: first in function spaces, then in the more general framework of distributions, where a powerful arsenal of techniques allows dealing with impulsive signals and singularities in both data and solutions of differential problems. This Second Edition contains additional exercises and a new chapter concerning signals and filters analysis in connection to integral transforms.
Publisher: Società Editrice Esculapio
ISBN:
Category : Mathematics
Languages : en
Pages : 528
Book Description
This book is an introduction to the study of ordinary differential equations and partial differential equations, ranging from elementary techniques to advanced tools. The presentation focusses on initial value problems, boundary value problems, equations with delayed argument and analysis of periodic solutions: main goals are the analysis of diffusion equation, wave equation, Laplace equation and signals. The study of relevant examples of differential models highlights the notion of well-posed problem. An expanded tutorial chapter collects the topics from basic undergraduate calculus that are used in subsequent chapters. A wide exposition concerning classical methods for solving problems related to differential equations is available: mainly separation of variables and Fourier series, with basic worked exercises. A whole chapter deals with the analytic functions of complex variable. An introduction to function spaces, distributions and basic notions of functional analysis is present. Several chapters are devoted to Fourier and Laplace transforms methods to solve boundary value problems and initial value problems for differential equations. Tools for the analysis appear gradually: first in function spaces, then in the more general framework of distributions, where a powerful arsenal of techniques allows dealing with impulsive signals and singularities in both data and solutions of differential problems. This Second Edition contains additional exercises and a new chapter concerning signals and filters analysis in connection to integral transforms.
The Heat Equation
Author: D. V. Widder
Publisher: Academic Press
ISBN: 0080873839
Category : Science
Languages : en
Pages : 285
Book Description
The Heat Equation
Publisher: Academic Press
ISBN: 0080873839
Category : Science
Languages : en
Pages : 285
Book Description
The Heat Equation
Analysis of Heat Equations on Domains
Author: El Maati Ouhabaz
Publisher:
ISBN: 9780013047384
Category : Heat
Languages : en
Pages : 284
Book Description
Publisher:
ISBN: 9780013047384
Category : Heat
Languages : en
Pages : 284
Book Description
Navier-stokes Equations In Planar Domains
Author: Matania Ben-artzi
Publisher: World Scientific
ISBN: 1783263016
Category : Mathematics
Languages : en
Pages : 315
Book Description
This volume deals with the classical Navier-Stokes system of equations governing the planar flow of incompressible, viscid fluid. It is a first-of-its-kind book, devoted to all aspects of the study of such flows, ranging from theoretical to numerical, including detailed accounts of classical test problems such as “driven cavity” and “double-driven cavity”.A comprehensive treatment of the mathematical theory developed in the last 15 years is elaborated, heretofore never presented in other books. It gives a detailed account of the modern compact schemes based on a “pure streamfunction” approach. In particular, a complete proof of convergence is given for the full nonlinear problem.This volume aims to present a variety of numerical test problems. It is therefore well positioned as a reference for both theoretical and applied mathematicians, as well as a text that can be used by graduate students pursuing studies in (pure or applied) mathematics, fluid dynamics and mathematical physics./a
Publisher: World Scientific
ISBN: 1783263016
Category : Mathematics
Languages : en
Pages : 315
Book Description
This volume deals with the classical Navier-Stokes system of equations governing the planar flow of incompressible, viscid fluid. It is a first-of-its-kind book, devoted to all aspects of the study of such flows, ranging from theoretical to numerical, including detailed accounts of classical test problems such as “driven cavity” and “double-driven cavity”.A comprehensive treatment of the mathematical theory developed in the last 15 years is elaborated, heretofore never presented in other books. It gives a detailed account of the modern compact schemes based on a “pure streamfunction” approach. In particular, a complete proof of convergence is given for the full nonlinear problem.This volume aims to present a variety of numerical test problems. It is therefore well positioned as a reference for both theoretical and applied mathematicians, as well as a text that can be used by graduate students pursuing studies in (pure or applied) mathematics, fluid dynamics and mathematical physics./a
Delay-Adaptive Linear Control
Author: Yang Zhu
Publisher: Princeton University Press
ISBN: 0691202540
Category : Mathematics
Languages : en
Pages : 354
Book Description
Basic predictor feedback for single-input systems -- Basic idea of adaptive control for single-input systems -- Single-input systems with full relative degree -- Single-input systems with arbitrary relative degree -- Exact predictor feedback for multi-input systems -- Full-state feedback of uncertain multi-input systems -- Output feedback of uncertain multi-input systems -- Output feedback of systems with uncertain delays, parameters and ODE state -- Predictor feedback for uncertainty-free systems -- Predictor feedback of uncertain single-input systems -- Predictor feedback of uncertain multi-input systems.
Publisher: Princeton University Press
ISBN: 0691202540
Category : Mathematics
Languages : en
Pages : 354
Book Description
Basic predictor feedback for single-input systems -- Basic idea of adaptive control for single-input systems -- Single-input systems with full relative degree -- Single-input systems with arbitrary relative degree -- Exact predictor feedback for multi-input systems -- Full-state feedback of uncertain multi-input systems -- Output feedback of uncertain multi-input systems -- Output feedback of systems with uncertain delays, parameters and ODE state -- Predictor feedback for uncertainty-free systems -- Predictor feedback of uncertain single-input systems -- Predictor feedback of uncertain multi-input systems.
Artificial Boundary Method
Author: Houde Han
Publisher: Springer Science & Business Media
ISBN: 3642354645
Category : Mathematics
Languages : en
Pages : 434
Book Description
"Artificial Boundary Method" systematically introduces the artificial boundary method for the numerical solutions of partial differential equations in unbounded domains. Detailed discussions treat different types of problems, including Laplace, Helmholtz, heat, Schrödinger, and Navier and Stokes equations. Both numerical methods and error analysis are discussed. The book is intended for researchers working in the fields of computational mathematics and mechanical engineering. Prof. Houde Han works at Tsinghua University, China; Prof. Xiaonan Wu works at Hong Kong Baptist University, China.
Publisher: Springer Science & Business Media
ISBN: 3642354645
Category : Mathematics
Languages : en
Pages : 434
Book Description
"Artificial Boundary Method" systematically introduces the artificial boundary method for the numerical solutions of partial differential equations in unbounded domains. Detailed discussions treat different types of problems, including Laplace, Helmholtz, heat, Schrödinger, and Navier and Stokes equations. Both numerical methods and error analysis are discussed. The book is intended for researchers working in the fields of computational mathematics and mechanical engineering. Prof. Houde Han works at Tsinghua University, China; Prof. Xiaonan Wu works at Hong Kong Baptist University, China.