An Introduction to Integrable Techniques for One-Dimensional Quantum Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download An Introduction to Integrable Techniques for One-Dimensional Quantum Systems PDF full book. Access full book title An Introduction to Integrable Techniques for One-Dimensional Quantum Systems by Fabio Franchini. Download full books in PDF and EPUB format.

An Introduction to Integrable Techniques for One-Dimensional Quantum Systems

An Introduction to Integrable Techniques for One-Dimensional Quantum Systems PDF Author: Fabio Franchini
Publisher: Springer
ISBN: 3319484877
Category : Science
Languages : en
Pages : 186

Book Description
This book introduces the reader to basic notions of integrable techniques for one-dimensional quantum systems. In a pedagogical way, a few examples of exactly solvable models are worked out to go from the coordinate approach to the Algebraic Bethe Ansatz, with some discussion on the finite temperature thermodynamics. The aim is to provide the instruments to approach more advanced books or to allow for a critical reading of research articles and the extraction of useful information from them. We describe the solution of the anisotropic XY spin chain; of the Lieb-Liniger model of bosons with contact interaction at zero and finite temperature; and of the XXZ spin chain, first in the coordinate and then in the algebraic approach. To establish the connection between the latter and the solution of two dimensional classical models, we also introduce and solve the 6-vertex model. Finally, the low energy physics of these integrable models is mapped into the corresponding conformal field theory. Through its style and the choice of topics, this book tries to touch all fundamental ideas behind integrability and is meant for students and researchers interested either in an introduction to later delve in the advance aspects of Bethe Ansatz or in an overview of the topic for broadening their culture.

An Introduction to Integrable Techniques for One-Dimensional Quantum Systems

An Introduction to Integrable Techniques for One-Dimensional Quantum Systems PDF Author: Fabio Franchini
Publisher: Springer
ISBN: 3319484877
Category : Science
Languages : en
Pages : 186

Book Description
This book introduces the reader to basic notions of integrable techniques for one-dimensional quantum systems. In a pedagogical way, a few examples of exactly solvable models are worked out to go from the coordinate approach to the Algebraic Bethe Ansatz, with some discussion on the finite temperature thermodynamics. The aim is to provide the instruments to approach more advanced books or to allow for a critical reading of research articles and the extraction of useful information from them. We describe the solution of the anisotropic XY spin chain; of the Lieb-Liniger model of bosons with contact interaction at zero and finite temperature; and of the XXZ spin chain, first in the coordinate and then in the algebraic approach. To establish the connection between the latter and the solution of two dimensional classical models, we also introduce and solve the 6-vertex model. Finally, the low energy physics of these integrable models is mapped into the corresponding conformal field theory. Through its style and the choice of topics, this book tries to touch all fundamental ideas behind integrability and is meant for students and researchers interested either in an introduction to later delve in the advance aspects of Bethe Ansatz or in an overview of the topic for broadening their culture.

Symmetries and Integrability of Difference Equations

Symmetries and Integrability of Difference Equations PDF Author: Decio Levi
Publisher: Springer
ISBN: 3319566660
Category : Science
Languages : en
Pages : 441

Book Description
This book shows how Lie group and integrability techniques, originally developed for differential equations, have been adapted to the case of difference equations. Difference equations are playing an increasingly important role in the natural sciences. Indeed, many phenomena are inherently discrete and thus naturally described by difference equations. More fundamentally, in subatomic physics, space-time may actually be discrete. Differential equations would then just be approximations of more basic discrete ones. Moreover, when using differential equations to analyze continuous processes, it is often necessary to resort to numerical methods. This always involves a discretization of the differential equations involved, thus replacing them by difference ones. Each of the nine peer-reviewed chapters in this volume serves as a self-contained treatment of a topic, containing introductory material as well as the latest research results and exercises. Each chapter is presented by one or more early career researchers in the specific field of their expertise and, in turn, written for early career researchers. As a survey of the current state of the art, this book will serve as a valuable reference and is particularly well suited as an introduction to the field of symmetries and integrability of difference equations. Therefore, the book will be welcomed by advanced undergraduate and graduate students as well as by more advanced researchers.

Correlations in Low-Dimensional Quantum Gases

Correlations in Low-Dimensional Quantum Gases PDF Author: Guillaume Lang
Publisher: Springer
ISBN: 3030052850
Category : Science
Languages : en
Pages : 204

Book Description
The book addresses several aspects of thermodynamics and correlations in the strongly-interacting regime of one-dimensional bosons, a topic at the forefront of current theoretical and experimental studies. Strongly correlated systems of one-dimensional bosons have a long history of theoretical study. Their experimental realisation in ultracold atom experiments is the subject of current research, which took off in the early 2000s. Yet these experiments raise new theoretical questions, just begging to be answered. Correlation functions are readily available for experimental measurements. In this book, they are tackled by means of sophisticated theoretical methods developed in condensed matter physics and mathematical physics, such as bosonization, the Bethe Ansatz and conformal field theory. Readers are introduced to these techniques, which are subsequently used to investigate many-body static and dynamical correlation functions.

Hydrodynamic Scales Of Integrable Many-body Systems

Hydrodynamic Scales Of Integrable Many-body Systems PDF Author: Herbert Spohn
Publisher: World Scientific
ISBN: 9811283540
Category : Science
Languages : en
Pages : 255

Book Description
This book provides a broad introduction to integrable systems with many degrees of freedom. Within a much larger orbit, discussed are models such as the classical Toda lattice, Calogero fluid, and Ablowitz-Ladik discretized nonlinear Schrödinger equation. On the quantum mechanical side, featured are the Lieb-Liniger delta-Bose gas and the quantum Toda lattice. As a genuinely novel twist, the study deals with random initial data described by generalized Gibbs ensembles with parameters of slow spatial variation. This is the hydrodynamic scale, in spirit similar to the ballistic Euler scale of nonintegrable simple fluids. While integrable microscopic particle models are very diverse, the central theme of this book is to elucidate their structural similarity on hydrodynamic scales.

Algebraic Bethe Ansatz And Correlation Functions: An Advanced Course

Algebraic Bethe Ansatz And Correlation Functions: An Advanced Course PDF Author: Nikita Slavnov
Publisher: World Scientific
ISBN: 9811254273
Category : Science
Languages : en
Pages : 399

Book Description
It is unlikely that today there is a specialist in theoretical physics who has not heard anything about the algebraic Bethe ansatz. Over the past few years, this method has been actively used in quantum statistical physics models, condensed matter physics, gauge field theories, and string theory.This book presents the state-of-the-art research in the field of algebraic Bethe ansatz. Along with the results that have already become classic, the book also contains the results obtained in recent years. The reader will get acquainted with the solution of the spectral problem and more complex problems that are solved using this method. Various methods for calculating scalar products and form factors are described in detail. Special attention is paid to applying the algebraic Bethe ansatz to the calculation of the correlation functions of quantum integrable models. The book also elaborates on multiple integral representations for correlation functions and examples of calculating the long-distance asymptotics of correlations.This text is intended for advanced undergraduate and postgraduate students, and specialists interested in the mathematical methods of studying physical systems that allow them to obtain exact results.

Elements of Classical and Quantum Integrable Systems

Elements of Classical and Quantum Integrable Systems PDF Author: Gleb Arutyunov
Publisher: Springer
ISBN: 303024198X
Category : Science
Languages : en
Pages : 420

Book Description
Integrable models have a fascinating history with many important discoveries that dates back to the famous Kepler problem of planetary motion. Nowadays it is well recognised that integrable systems play a ubiquitous role in many research areas ranging from quantum field theory, string theory, solvable models of statistical mechanics, black hole physics, quantum chaos and the AdS/CFT correspondence, to pure mathematics, such as representation theory, harmonic analysis, random matrix theory and complex geometry. Starting with the Liouville theorem and finite-dimensional integrable models, this book covers the basic concepts of integrability including elements of the modern geometric approach based on Poisson reduction, classical and quantum factorised scattering and various incarnations of the Bethe Ansatz. Applications of integrability methods are illustrated in vast detail on the concrete examples of the Calogero-Moser-Sutherland and Ruijsenaars-Schneider models, the Heisenberg spin chain and the one-dimensional Bose gas interacting via a delta-function potential. This book has intermediate and advanced topics with details to make them clearly comprehensible.

Entanglement in Spin Chains

Entanglement in Spin Chains PDF Author: Abolfazl Bayat
Publisher: Springer Nature
ISBN: 303103998X
Category : Science
Languages : en
Pages : 549

Book Description
This book covers recent developments in the understanding, quantification, and exploitation of entanglement in spin chain models from both condensed matter and quantum information perspectives. Spin chain models are at the foundation of condensed matter physics and quantum information technologies and elucidate many fundamental phenomena such as information scrambling, quantum phase transitions, and many-body localization. Moreover, many quantum materials and emerging quantum devices are well described by spin chains. Comprising accessible, self-contained chapters written by leading researchers, this book is essential reading for graduate students and researchers in quantum materials and quantum information. The coverage is comprehensive, from the fundamental entanglement aspects of quantum criticality, non-equilibrium dynamics, classical and quantum simulation of spin chains through to their experimental realizations, and beyond into machine learning applications.

Classical and Quantum Nonlinear Integrable Systems

Classical and Quantum Nonlinear Integrable Systems PDF Author: A Kundu
Publisher: CRC Press
ISBN: 0429525044
Category : Science
Languages : en
Pages : 222

Book Description
Covering both classical and quantum models, nonlinear integrable systems are of considerable theoretical and practical interest, with applications over a wide range of topics, including water waves, pin models, nonlinear optics, correlated electron systems, plasma physics, and reaction-diffusion processes. Comprising one part on classical theories

Crossroad of Maxwell Demon

Crossroad of Maxwell Demon PDF Author: Xavier Bouju
Publisher: Springer Nature
ISBN: 3031579046
Category :
Languages : en
Pages : 200

Book Description


Quantum Inverse Scattering Method and Correlation Functions

Quantum Inverse Scattering Method and Correlation Functions PDF Author: V. E. Korepin
Publisher: Cambridge University Press
ISBN: 9780521586467
Category : Mathematics
Languages : en
Pages : 582

Book Description
The quantum inverse scattering method is a means of finding exact solutions of two-dimensional models in quantum field theory and statistical physics (such as the sine-Go rdon equation or the quantum non-linear Schrödinger equation). These models are the subject of much attention amongst physicists and mathematicians.The present work is an introduction to this important and exciting area. It consists of four parts. The first deals with the Bethe ansatz and calculation of physical quantities. The authors then tackle the theory of the quantum inverse scattering method before applying it in the second half of the book to the calculation of correlation functions. This is one of the most important applications of the method and the authors have made significant contributions to the area. Here they describe some of the most recent and general approaches and include some new results.The book will be essential reading for all mathematical physicists working in field theory and statistical physics.