Author: Toka Diagana
Publisher: Nova Publishers
ISBN: 9781594544248
Category : Mathematics
Languages : en
Pages : 136
Book Description
This book provides the reader with a self-contained treatment of the classical operator theory with significant applications to abstract differential equations, and an elegant introduction to basic concepts and methods of the rapidly growing theory of the so-called p-adic operator theory.
An Introduction to Classical and P-adic Theory of Linear Operators and Applications
Non-Archimedean Operator Theory
Author: Toka Diagana
Publisher: Springer
ISBN: 331927323X
Category : Mathematics
Languages : en
Pages : 163
Book Description
This book focuses on the theory of linear operators on non-Archimedean Banach spaces. The topics treated in this book range from a basic introduction to non-Archimedean valued fields, free non-Archimedean Banach spaces, bounded and unbounded linear operators in the non-Archimedean setting, to the spectral theory for some classes of linear operators. The theory of Fredholm operators is emphasized and used as an important tool in the study of the spectral theory of non-Archimedean operators. Explicit descriptions of the spectra of some operators are worked out. Moreover, detailed background materials on non-Archimedean valued fields and free non-Archimedean Banach spaces are included for completeness and for reference. The readership of the book is aimed toward graduate and postgraduate students, mathematicians, and non-mathematicians such as physicists and engineers who are interested in non-Archimedean functional analysis. Further, it can be used as an introduction to the study of non-Archimedean operator theory in general and to the study of spectral theory in other special cases.
Publisher: Springer
ISBN: 331927323X
Category : Mathematics
Languages : en
Pages : 163
Book Description
This book focuses on the theory of linear operators on non-Archimedean Banach spaces. The topics treated in this book range from a basic introduction to non-Archimedean valued fields, free non-Archimedean Banach spaces, bounded and unbounded linear operators in the non-Archimedean setting, to the spectral theory for some classes of linear operators. The theory of Fredholm operators is emphasized and used as an important tool in the study of the spectral theory of non-Archimedean operators. Explicit descriptions of the spectra of some operators are worked out. Moreover, detailed background materials on non-Archimedean valued fields and free non-Archimedean Banach spaces are included for completeness and for reference. The readership of the book is aimed toward graduate and postgraduate students, mathematicians, and non-mathematicians such as physicists and engineers who are interested in non-Archimedean functional analysis. Further, it can be used as an introduction to the study of non-Archimedean operator theory in general and to the study of spectral theory in other special cases.
CMUC
Pseudo Almost Periodic Functions in Banach Spaces
Author: Toka Diagana
Publisher: Nova Publishers
ISBN: 9781600216374
Category : Mathematics
Languages : en
Pages : 152
Book Description
Publisher: Nova Publishers
ISBN: 9781600216374
Category : Mathematics
Languages : en
Pages : 152
Book Description
Mathematical Reviews
A Course in p-adic Analysis
Author: Alain M. Robert
Publisher: Springer Science & Business Media
ISBN: 1475732546
Category : Mathematics
Languages : en
Pages : 451
Book Description
Discovered at the turn of the 20th century, p-adic numbers are frequently used by mathematicians and physicists. This text is a self-contained presentation of basic p-adic analysis with a focus on analytic topics. It offers many features rarely treated in introductory p-adic texts such as topological models of p-adic spaces inside Euclidian space, a special case of Hazewinkel’s functional equation lemma, and a treatment of analytic elements.
Publisher: Springer Science & Business Media
ISBN: 1475732546
Category : Mathematics
Languages : en
Pages : 451
Book Description
Discovered at the turn of the 20th century, p-adic numbers are frequently used by mathematicians and physicists. This text is a self-contained presentation of basic p-adic analysis with a focus on analytic topics. It offers many features rarely treated in introductory p-adic texts such as topological models of p-adic spaces inside Euclidian space, a special case of Hazewinkel’s functional equation lemma, and a treatment of analytic elements.
A Course in Arithmetic
Author: J-P. Serre
Publisher: Springer Science & Business Media
ISBN: 1468498843
Category : Mathematics
Languages : en
Pages : 126
Book Description
This book is divided into two parts. The first one is purely algebraic. Its objective is the classification of quadratic forms over the field of rational numbers (Hasse-Minkowski theorem). It is achieved in Chapter IV. The first three chapters contain some preliminaries: quadratic reciprocity law, p-adic fields, Hilbert symbols. Chapter V applies the preceding results to integral quadratic forms of discriminant ± I. These forms occur in various questions: modular functions, differential topology, finite groups. The second part (Chapters VI and VII) uses "analytic" methods (holomor phic functions). Chapter VI gives the proof of the "theorem on arithmetic progressions" due to Dirichlet; this theorem is used at a critical point in the first part (Chapter Ill, no. 2.2). Chapter VII deals with modular forms, and in particular, with theta functions. Some of the quadratic forms of Chapter V reappear here. The two parts correspond to lectures given in 1962 and 1964 to second year students at the Ecole Normale Superieure. A redaction of these lectures in the form of duplicated notes, was made by J.-J. Sansuc (Chapters I-IV) and J.-P. Ramis and G. Ruget (Chapters VI-VII). They were very useful to me; I extend here my gratitude to their authors.
Publisher: Springer Science & Business Media
ISBN: 1468498843
Category : Mathematics
Languages : en
Pages : 126
Book Description
This book is divided into two parts. The first one is purely algebraic. Its objective is the classification of quadratic forms over the field of rational numbers (Hasse-Minkowski theorem). It is achieved in Chapter IV. The first three chapters contain some preliminaries: quadratic reciprocity law, p-adic fields, Hilbert symbols. Chapter V applies the preceding results to integral quadratic forms of discriminant ± I. These forms occur in various questions: modular functions, differential topology, finite groups. The second part (Chapters VI and VII) uses "analytic" methods (holomor phic functions). Chapter VI gives the proof of the "theorem on arithmetic progressions" due to Dirichlet; this theorem is used at a critical point in the first part (Chapter Ill, no. 2.2). Chapter VII deals with modular forms, and in particular, with theta functions. Some of the quadratic forms of Chapter V reappear here. The two parts correspond to lectures given in 1962 and 1964 to second year students at the Ecole Normale Superieure. A redaction of these lectures in the form of duplicated notes, was made by J.-J. Sansuc (Chapters I-IV) and J.-P. Ramis and G. Ruget (Chapters VI-VII). They were very useful to me; I extend here my gratitude to their authors.
Probability
Author: A.N. Shiryaev
Publisher: Springer Science & Business Media
ISBN: 1489900187
Category : Mathematics
Languages : en
Pages : 589
Book Description
This textbook is based on a three-semester course of lectures given by the author in recent years in the Mechanics-Mathematics Faculty of Moscow State University and issued, in part, in mimeographed form under the title Probability, Statistics, Stochastic Processes, I, II by the Moscow State University Press. We follow tradition by devoting the first part of the course (roughly one semester) to the elementary theory of probability (Chapter I). This begins with the construction of probabilistic models with finitely many outcomes and introduces such fundamental probabilistic concepts as sample spaces, events, probability, independence, random variables, expectation, corre lation, conditional probabilities, and so on. Many probabilistic and statistical regularities are effectively illustrated even by the simplest random walk generated by Bernoulli trials. In this connection we study both classical results (law of large numbers, local and integral De Moivre and Laplace theorems) and more modern results (for example, the arc sine law). The first chapter concludes with a discussion of dependent random vari ables generated by martingales and by Markov chains.
Publisher: Springer Science & Business Media
ISBN: 1489900187
Category : Mathematics
Languages : en
Pages : 589
Book Description
This textbook is based on a three-semester course of lectures given by the author in recent years in the Mechanics-Mathematics Faculty of Moscow State University and issued, in part, in mimeographed form under the title Probability, Statistics, Stochastic Processes, I, II by the Moscow State University Press. We follow tradition by devoting the first part of the course (roughly one semester) to the elementary theory of probability (Chapter I). This begins with the construction of probabilistic models with finitely many outcomes and introduces such fundamental probabilistic concepts as sample spaces, events, probability, independence, random variables, expectation, corre lation, conditional probabilities, and so on. Many probabilistic and statistical regularities are effectively illustrated even by the simplest random walk generated by Bernoulli trials. In this connection we study both classical results (law of large numbers, local and integral De Moivre and Laplace theorems) and more modern results (for example, the arc sine law). The first chapter concludes with a discussion of dependent random vari ables generated by martingales and by Markov chains.
A Course in Functional Analysis
Author: John B Conway
Publisher: Springer
ISBN: 1475743831
Category : Mathematics
Languages : en
Pages : 416
Book Description
This book is an introductory text in functional analysis. Unlike many modern treatments, it begins with the particular and works its way to the more general. From the reviews: "This book is an excellent text for a first graduate course in functional analysis....Many interesting and important applications are included....It includes an abundance of exercises, and is written in the engaging and lucid style which we have come to expect from the author." --MATHEMATICAL REVIEWS
Publisher: Springer
ISBN: 1475743831
Category : Mathematics
Languages : en
Pages : 416
Book Description
This book is an introductory text in functional analysis. Unlike many modern treatments, it begins with the particular and works its way to the more general. From the reviews: "This book is an excellent text for a first graduate course in functional analysis....Many interesting and important applications are included....It includes an abundance of exercises, and is written in the engaging and lucid style which we have come to expect from the author." --MATHEMATICAL REVIEWS
P-adic Analysis and Mathematical Physics
Author: Vasili? Sergeevich Vladimirov
Publisher: World Scientific
ISBN: 9789810208806
Category : Science
Languages : en
Pages : 350
Book Description
p-adic numbers play a very important role in modern number theory, algebraic geometry and representation theory. Lately p-adic numbers have attracted a great deal of attention in modern theoretical physics as a promising new approach for describing the non-Archimedean geometry of space-time at small distances.This is the first book to deal with applications of p-adic numbers in theoretical and mathematical physics. It gives an elementary and thoroughly written introduction to p-adic numbers and p-adic analysis with great numbers of examples as well as applications of p-adic numbers in classical mechanics, dynamical systems, quantum mechanics, statistical physics, quantum field theory and string theory.
Publisher: World Scientific
ISBN: 9789810208806
Category : Science
Languages : en
Pages : 350
Book Description
p-adic numbers play a very important role in modern number theory, algebraic geometry and representation theory. Lately p-adic numbers have attracted a great deal of attention in modern theoretical physics as a promising new approach for describing the non-Archimedean geometry of space-time at small distances.This is the first book to deal with applications of p-adic numbers in theoretical and mathematical physics. It gives an elementary and thoroughly written introduction to p-adic numbers and p-adic analysis with great numbers of examples as well as applications of p-adic numbers in classical mechanics, dynamical systems, quantum mechanics, statistical physics, quantum field theory and string theory.