Author: Heinz H. Bauschke
Publisher: Springer Science & Business Media
ISBN: 1441995692
Category : Mathematics
Languages : en
Pages : 409
Book Description
"Fixed-Point Algorithms for Inverse Problems in Science and Engineering" presents some of the most recent work from top-notch researchers studying projection and other first-order fixed-point algorithms in several areas of mathematics and the applied sciences. The material presented provides a survey of the state-of-the-art theory and practice in fixed-point algorithms, identifying emerging problems driven by applications, and discussing new approaches for solving these problems. This book incorporates diverse perspectives from broad-ranging areas of research including, variational analysis, numerical linear algebra, biotechnology, materials science, computational solid-state physics, and chemistry. Topics presented include: Theory of Fixed-point algorithms: convex analysis, convex optimization, subdifferential calculus, nonsmooth analysis, proximal point methods, projection methods, resolvent and related fixed-point theoretic methods, and monotone operator theory. Numerical analysis of fixed-point algorithms: choice of step lengths, of weights, of blocks for block-iterative and parallel methods, and of relaxation parameters; regularization of ill-posed problems; numerical comparison of various methods. Areas of Applications: engineering (image and signal reconstruction and decompression problems), computer tomography and radiation treatment planning (convex feasibility problems), astronomy (adaptive optics), crystallography (molecular structure reconstruction), computational chemistry (molecular structure simulation) and other areas. Because of the variety of applications presented, this book can easily serve as a basis for new and innovated research and collaboration.
Fixed-Point Algorithms for Inverse Problems in Science and Engineering
Author: Heinz H. Bauschke
Publisher: Springer Science & Business Media
ISBN: 1441995692
Category : Mathematics
Languages : en
Pages : 409
Book Description
"Fixed-Point Algorithms for Inverse Problems in Science and Engineering" presents some of the most recent work from top-notch researchers studying projection and other first-order fixed-point algorithms in several areas of mathematics and the applied sciences. The material presented provides a survey of the state-of-the-art theory and practice in fixed-point algorithms, identifying emerging problems driven by applications, and discussing new approaches for solving these problems. This book incorporates diverse perspectives from broad-ranging areas of research including, variational analysis, numerical linear algebra, biotechnology, materials science, computational solid-state physics, and chemistry. Topics presented include: Theory of Fixed-point algorithms: convex analysis, convex optimization, subdifferential calculus, nonsmooth analysis, proximal point methods, projection methods, resolvent and related fixed-point theoretic methods, and monotone operator theory. Numerical analysis of fixed-point algorithms: choice of step lengths, of weights, of blocks for block-iterative and parallel methods, and of relaxation parameters; regularization of ill-posed problems; numerical comparison of various methods. Areas of Applications: engineering (image and signal reconstruction and decompression problems), computer tomography and radiation treatment planning (convex feasibility problems), astronomy (adaptive optics), crystallography (molecular structure reconstruction), computational chemistry (molecular structure simulation) and other areas. Because of the variety of applications presented, this book can easily serve as a basis for new and innovated research and collaboration.
Publisher: Springer Science & Business Media
ISBN: 1441995692
Category : Mathematics
Languages : en
Pages : 409
Book Description
"Fixed-Point Algorithms for Inverse Problems in Science and Engineering" presents some of the most recent work from top-notch researchers studying projection and other first-order fixed-point algorithms in several areas of mathematics and the applied sciences. The material presented provides a survey of the state-of-the-art theory and practice in fixed-point algorithms, identifying emerging problems driven by applications, and discussing new approaches for solving these problems. This book incorporates diverse perspectives from broad-ranging areas of research including, variational analysis, numerical linear algebra, biotechnology, materials science, computational solid-state physics, and chemistry. Topics presented include: Theory of Fixed-point algorithms: convex analysis, convex optimization, subdifferential calculus, nonsmooth analysis, proximal point methods, projection methods, resolvent and related fixed-point theoretic methods, and monotone operator theory. Numerical analysis of fixed-point algorithms: choice of step lengths, of weights, of blocks for block-iterative and parallel methods, and of relaxation parameters; regularization of ill-posed problems; numerical comparison of various methods. Areas of Applications: engineering (image and signal reconstruction and decompression problems), computer tomography and radiation treatment planning (convex feasibility problems), astronomy (adaptive optics), crystallography (molecular structure reconstruction), computational chemistry (molecular structure simulation) and other areas. Because of the variety of applications presented, this book can easily serve as a basis for new and innovated research and collaboration.
Algorithms for Solving Common Fixed Point Problems
Author: Alexander J. Zaslavski
Publisher: Springer
ISBN: 3319774379
Category : Mathematics
Languages : en
Pages : 320
Book Description
This book details approximate solutions to common fixed point problems and convex feasibility problems in the presence of perturbations. Convex feasibility problems search for a common point of a finite collection of subsets in a Hilbert space; common fixed point problems pursue a common fixed point of a finite collection of self-mappings in a Hilbert space. A variety of algorithms are considered in this book for solving both types of problems, the study of which has fueled a rapidly growing area of research. This monograph is timely and highlights the numerous applications to engineering, computed tomography, and radiation therapy planning. Totaling eight chapters, this book begins with an introduction to foundational material and moves on to examine iterative methods in metric spaces. The dynamic string-averaging methods for common fixed point problems in normed space are analyzed in Chapter 3. Dynamic string methods, for common fixed point problems in a metric space are introduced and discussed in Chapter 4. Chapter 5 is devoted to the convergence of an abstract version of the algorithm which has been called component-averaged row projections (CARP). Chapter 6 studies a proximal algorithm for finding a common zero of a family of maximal monotone operators. Chapter 7 extends the results of Chapter 6 for a dynamic string-averaging version of the proximal algorithm. In Chapters 8 subgradient projections algorithms for convex feasibility problems are examined for infinite dimensional Hilbert spaces.
Publisher: Springer
ISBN: 3319774379
Category : Mathematics
Languages : en
Pages : 320
Book Description
This book details approximate solutions to common fixed point problems and convex feasibility problems in the presence of perturbations. Convex feasibility problems search for a common point of a finite collection of subsets in a Hilbert space; common fixed point problems pursue a common fixed point of a finite collection of self-mappings in a Hilbert space. A variety of algorithms are considered in this book for solving both types of problems, the study of which has fueled a rapidly growing area of research. This monograph is timely and highlights the numerous applications to engineering, computed tomography, and radiation therapy planning. Totaling eight chapters, this book begins with an introduction to foundational material and moves on to examine iterative methods in metric spaces. The dynamic string-averaging methods for common fixed point problems in normed space are analyzed in Chapter 3. Dynamic string methods, for common fixed point problems in a metric space are introduced and discussed in Chapter 4. Chapter 5 is devoted to the convergence of an abstract version of the algorithm which has been called component-averaged row projections (CARP). Chapter 6 studies a proximal algorithm for finding a common zero of a family of maximal monotone operators. Chapter 7 extends the results of Chapter 6 for a dynamic string-averaging version of the proximal algorithm. In Chapters 8 subgradient projections algorithms for convex feasibility problems are examined for infinite dimensional Hilbert spaces.
Solutions of Fixed Point Problems with Computational Errors
Author: Alexander J. Zaslavski
Publisher: Springer Nature
ISBN: 3031508793
Category :
Languages : en
Pages : 392
Book Description
Publisher: Springer Nature
ISBN: 3031508793
Category :
Languages : en
Pages : 392
Book Description
Fixed Point Theory and Applications
Author: Ravi P. Agarwal
Publisher: Cambridge University Press
ISBN: 1139433792
Category : Mathematics
Languages : en
Pages : 182
Book Description
This book provides a clear exposition of the flourishing field of fixed point theory. Starting from the basics of Banach's contraction theorem, most of the main results and techniques are developed: fixed point results are established for several classes of maps and the three main approaches to establishing continuation principles are presented. The theory is applied to many areas of interest in analysis. Topological considerations play a crucial role, including a final chapter on the relationship with degree theory. Researchers and graduate students in applicable analysis will find this to be a useful survey of the fundamental principles of the subject. The very extensive bibliography and close to 100 exercises mean that it can be used both as a text and as a comprehensive reference work, currently the only one of its type.
Publisher: Cambridge University Press
ISBN: 1139433792
Category : Mathematics
Languages : en
Pages : 182
Book Description
This book provides a clear exposition of the flourishing field of fixed point theory. Starting from the basics of Banach's contraction theorem, most of the main results and techniques are developed: fixed point results are established for several classes of maps and the three main approaches to establishing continuation principles are presented. The theory is applied to many areas of interest in analysis. Topological considerations play a crucial role, including a final chapter on the relationship with degree theory. Researchers and graduate students in applicable analysis will find this to be a useful survey of the fundamental principles of the subject. The very extensive bibliography and close to 100 exercises mean that it can be used both as a text and as a comprehensive reference work, currently the only one of its type.
Fixed Point Theory and Graph Theory
Author: Monther Alfuraidan
Publisher: Academic Press
ISBN: 0128043652
Category : Mathematics
Languages : en
Pages : 444
Book Description
Fixed Point Theory and Graph Theory provides an intersection between the theories of fixed point theorems that give the conditions under which maps (single or multivalued) have solutions and graph theory which uses mathematical structures to illustrate the relationship between ordered pairs of objects in terms of their vertices and directed edges. This edited reference work is perhaps the first to provide a link between the two theories, describing not only their foundational aspects, but also the most recent advances and the fascinating intersection of the domains. The authors provide solution methods for fixed points in different settings, with two chapters devoted to the solutions method for critically important non-linear problems in engineering, namely, variational inequalities, fixed point, split feasibility, and hierarchical variational inequality problems. The last two chapters are devoted to integrating fixed point theory in spaces with the graph and the use of retractions in the fixed point theory for ordered sets. - Introduces both metric fixed point and graph theory in terms of their disparate foundations and common application environments - Provides a unique integration of otherwise disparate domains that aids both students seeking to understand either area and researchers interested in establishing an integrated research approach - Emphasizes solution methods for fixed points in non-linear problems such as variational inequalities, split feasibility, and hierarchical variational inequality problems that is particularly appropriate for engineering and core science applications
Publisher: Academic Press
ISBN: 0128043652
Category : Mathematics
Languages : en
Pages : 444
Book Description
Fixed Point Theory and Graph Theory provides an intersection between the theories of fixed point theorems that give the conditions under which maps (single or multivalued) have solutions and graph theory which uses mathematical structures to illustrate the relationship between ordered pairs of objects in terms of their vertices and directed edges. This edited reference work is perhaps the first to provide a link between the two theories, describing not only their foundational aspects, but also the most recent advances and the fascinating intersection of the domains. The authors provide solution methods for fixed points in different settings, with two chapters devoted to the solutions method for critically important non-linear problems in engineering, namely, variational inequalities, fixed point, split feasibility, and hierarchical variational inequality problems. The last two chapters are devoted to integrating fixed point theory in spaces with the graph and the use of retractions in the fixed point theory for ordered sets. - Introduces both metric fixed point and graph theory in terms of their disparate foundations and common application environments - Provides a unique integration of otherwise disparate domains that aids both students seeking to understand either area and researchers interested in establishing an integrated research approach - Emphasizes solution methods for fixed points in non-linear problems such as variational inequalities, split feasibility, and hierarchical variational inequality problems that is particularly appropriate for engineering and core science applications
Nonlinear Ill-posed Problems of Monotone Type
Author: Yakov Alber
Publisher: Springer Science & Business Media
ISBN: 9781402043956
Category : Mathematics
Languages : en
Pages : 432
Book Description
Interest in regularization methods for ill-posed nonlinear operator equations and variational inequalities of monotone type in Hilbert and Banach spaces has grown rapidly over recent years. Results in the field over the last three decades, previously only available in journal articles, are comprehensively explored with particular attention given to applications of regularization methods as well as to practical methods used in computational analysis.
Publisher: Springer Science & Business Media
ISBN: 9781402043956
Category : Mathematics
Languages : en
Pages : 432
Book Description
Interest in regularization methods for ill-posed nonlinear operator equations and variational inequalities of monotone type in Hilbert and Banach spaces has grown rapidly over recent years. Results in the field over the last three decades, previously only available in journal articles, are comprehensively explored with particular attention given to applications of regularization methods as well as to practical methods used in computational analysis.
Topics in Metric Fixed Point Theory
Author: Kazimierz Goebel
Publisher: Cambridge University Press
ISBN: 9780521382892
Category : Mathematics
Languages : en
Pages : 258
Book Description
Metric Fixed Point Theory has proved a flourishing area of research for many mathematicians. This book aims to offer the mathematical community an accessible, self-contained account which can be used as an introduction to the subject and its development. It will be understandable to a wide audience, including non-specialists, and provide a source of examples, references and new approaches for those currently working in the subject.
Publisher: Cambridge University Press
ISBN: 9780521382892
Category : Mathematics
Languages : en
Pages : 258
Book Description
Metric Fixed Point Theory has proved a flourishing area of research for many mathematicians. This book aims to offer the mathematical community an accessible, self-contained account which can be used as an introduction to the subject and its development. It will be understandable to a wide audience, including non-specialists, and provide a source of examples, references and new approaches for those currently working in the subject.
Optimization on Solution Sets of Common Fixed Point Problems
Author: Alexander J. Zaslavski
Publisher: Springer Nature
ISBN: 3030788490
Category : Mathematics
Languages : en
Pages : 434
Book Description
This book is devoted to a detailed study of the subgradient projection method and its variants for convex optimization problems over the solution sets of common fixed point problems and convex feasibility problems. These optimization problems are investigated to determine good solutions obtained by different versions of the subgradient projection algorithm in the presence of sufficiently small computational errors. The use of selected algorithms is highlighted including the Cimmino type subgradient, the iterative subgradient, and the dynamic string-averaging subgradient. All results presented are new. Optimization problems where the underlying constraints are the solution sets of other problems, frequently occur in applied mathematics. The reader should not miss the section in Chapter 1 which considers some examples arising in the real world applications. The problems discussed have an important impact in optimization theory as well. The book will be useful for researches interested in the optimization theory and its applications.
Publisher: Springer Nature
ISBN: 3030788490
Category : Mathematics
Languages : en
Pages : 434
Book Description
This book is devoted to a detailed study of the subgradient projection method and its variants for convex optimization problems over the solution sets of common fixed point problems and convex feasibility problems. These optimization problems are investigated to determine good solutions obtained by different versions of the subgradient projection algorithm in the presence of sufficiently small computational errors. The use of selected algorithms is highlighted including the Cimmino type subgradient, the iterative subgradient, and the dynamic string-averaging subgradient. All results presented are new. Optimization problems where the underlying constraints are the solution sets of other problems, frequently occur in applied mathematics. The reader should not miss the section in Chapter 1 which considers some examples arising in the real world applications. The problems discussed have an important impact in optimization theory as well. The book will be useful for researches interested in the optimization theory and its applications.
Approximate Solutions of Common Fixed-Point Problems
Author: Alexander J. Zaslavski
Publisher: Springer
ISBN: 3319332554
Category : Mathematics
Languages : en
Pages : 457
Book Description
This book presents results on the convergence behavior of algorithms which are known as vital tools for solving convex feasibility problems and common fixed point problems. The main goal for us in dealing with a known computational error is to find what approximate solution can be obtained and how many iterates one needs to find it. According to know results, these algorithms should converge to a solution. In this exposition, these algorithms are studied, taking into account computational errors which remain consistent in practice. In this case the convergence to a solution does not take place. We show that our algorithms generate a good approximate solution if computational errors are bounded from above by a small positive constant. Beginning with an introduction, this monograph moves on to study: · dynamic string-averaging methods for common fixed point problems in a Hilbert space · dynamic string methods for common fixed point problems in a metric space“/p> · dynamic string-averaging version of the proximal algorithm · common fixed point problems in metric spaces · common fixed point problems in the spaces with distances of the Bregman type · a proximal algorithm for finding a common zero of a family of maximal monotone operators · subgradient projections algorithms for convex feasibility problems in Hilbert spaces
Publisher: Springer
ISBN: 3319332554
Category : Mathematics
Languages : en
Pages : 457
Book Description
This book presents results on the convergence behavior of algorithms which are known as vital tools for solving convex feasibility problems and common fixed point problems. The main goal for us in dealing with a known computational error is to find what approximate solution can be obtained and how many iterates one needs to find it. According to know results, these algorithms should converge to a solution. In this exposition, these algorithms are studied, taking into account computational errors which remain consistent in practice. In this case the convergence to a solution does not take place. We show that our algorithms generate a good approximate solution if computational errors are bounded from above by a small positive constant. Beginning with an introduction, this monograph moves on to study: · dynamic string-averaging methods for common fixed point problems in a Hilbert space · dynamic string methods for common fixed point problems in a metric space“/p> · dynamic string-averaging version of the proximal algorithm · common fixed point problems in metric spaces · common fixed point problems in the spaces with distances of the Bregman type · a proximal algorithm for finding a common zero of a family of maximal monotone operators · subgradient projections algorithms for convex feasibility problems in Hilbert spaces
Numerical Algorithms
Author: Justin Solomon
Publisher: CRC Press
ISBN: 1482251892
Category : Computers
Languages : en
Pages : 400
Book Description
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig
Publisher: CRC Press
ISBN: 1482251892
Category : Computers
Languages : en
Pages : 400
Book Description
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig