ALGORITHMS AND OPTIMAL CONTROL FOR SPACECRAFT MAGNETIC ATTITUDE MANEUVERS PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download ALGORITHMS AND OPTIMAL CONTROL FOR SPACECRAFT MAGNETIC ATTITUDE MANEUVERS PDF full book. Access full book title ALGORITHMS AND OPTIMAL CONTROL FOR SPACECRAFT MAGNETIC ATTITUDE MANEUVERS by . Download full books in PDF and EPUB format.

ALGORITHMS AND OPTIMAL CONTROL FOR SPACECRAFT MAGNETIC ATTITUDE MANEUVERS

ALGORITHMS AND OPTIMAL CONTROL FOR SPACECRAFT MAGNETIC ATTITUDE MANEUVERS PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Abstract : This study focused on providing applicable control solutions for spacecraft magnetic attitude control system. Basically, two main lines are pursued; first, developing detumbling control laws and second, an improvement in the three-axis attitude control schemes by extending magnetic rods activation time. Spacecraft, after separation from the launching mechanism, experiences a tumbling phase due to an undesired angular momentum. In this study, we present a new efficient variant of the B-dot detumbling law by introducing a substitute of the spacecraft angular velocity, based on the ambient magnetic field data. This B-dot law preserves the orthogonality, among the applied torque, dipole moment and magnetic field vectors. Most of the existing variants of the B-dot law in the literature don't preserve this orthogonality. Furthermore, the problem of minimum-time spacecraft magnetic detumbling is revisited within the context of optimal control theory. Two formulations are presented; the first one assumes the availability of the angular velocity measurements for feedback. The second formulation assumes the availability of only the ambient magnetic field measurements in the feedback; the latter is considered another optimal-based B-dot law. A reduction in detumbling time is fulfilled by the proposed laws along with less power consumption for the proposed B-dot laws. In magnetic attitude maneuvers, magnetic rods and magnetometers usually operate alternatively, to avoid the magnetic rods' noise effect on magnetometers measurements. Because of that, there will be no control authority over the spacecraft during the magnetometer measurement period. Hence longer maneuver times are usually experienced. In this study, a control scheme that enables the extension of the magnetic rods' activation time is developed, regardless of the attitude control law. The key concept is replacing the real magnetic field measurement by a pseudo measurement, which is computed based on other sensors measurements. By applying a known command to the spacecraft and measuring the spacecraft response, it is possible to compute the ambient magnetic field around the spacecraft. The system mathematical singularity is solved using the Tikhonov regularization approach. Another developed approach estimates the magnetic field, using a relatively simple and fast dynamic model inside a Multiplicative Extended Kalman Filter. A less maneuver time with less power consumption are fulfilled. These control approaches are further validated using real telemetry data from CASSIOPE mission. This dissertation develops a stability analysis for the spacecraft magnetic attitude control, taking into consideration the alternate operation between the magnetic rods and the magnetometers. It is shown that the system stability degrades because of this alternate operation, supporting the proposed approach of extending the operation time of the magnetic rods.

ALGORITHMS AND OPTIMAL CONTROL FOR SPACECRAFT MAGNETIC ATTITUDE MANEUVERS

ALGORITHMS AND OPTIMAL CONTROL FOR SPACECRAFT MAGNETIC ATTITUDE MANEUVERS PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Abstract : This study focused on providing applicable control solutions for spacecraft magnetic attitude control system. Basically, two main lines are pursued; first, developing detumbling control laws and second, an improvement in the three-axis attitude control schemes by extending magnetic rods activation time. Spacecraft, after separation from the launching mechanism, experiences a tumbling phase due to an undesired angular momentum. In this study, we present a new efficient variant of the B-dot detumbling law by introducing a substitute of the spacecraft angular velocity, based on the ambient magnetic field data. This B-dot law preserves the orthogonality, among the applied torque, dipole moment and magnetic field vectors. Most of the existing variants of the B-dot law in the literature don't preserve this orthogonality. Furthermore, the problem of minimum-time spacecraft magnetic detumbling is revisited within the context of optimal control theory. Two formulations are presented; the first one assumes the availability of the angular velocity measurements for feedback. The second formulation assumes the availability of only the ambient magnetic field measurements in the feedback; the latter is considered another optimal-based B-dot law. A reduction in detumbling time is fulfilled by the proposed laws along with less power consumption for the proposed B-dot laws. In magnetic attitude maneuvers, magnetic rods and magnetometers usually operate alternatively, to avoid the magnetic rods' noise effect on magnetometers measurements. Because of that, there will be no control authority over the spacecraft during the magnetometer measurement period. Hence longer maneuver times are usually experienced. In this study, a control scheme that enables the extension of the magnetic rods' activation time is developed, regardless of the attitude control law. The key concept is replacing the real magnetic field measurement by a pseudo measurement, which is computed based on other sensors measurements. By applying a known command to the spacecraft and measuring the spacecraft response, it is possible to compute the ambient magnetic field around the spacecraft. The system mathematical singularity is solved using the Tikhonov regularization approach. Another developed approach estimates the magnetic field, using a relatively simple and fast dynamic model inside a Multiplicative Extended Kalman Filter. A less maneuver time with less power consumption are fulfilled. These control approaches are further validated using real telemetry data from CASSIOPE mission. This dissertation develops a stability analysis for the spacecraft magnetic attitude control, taking into consideration the alternate operation between the magnetic rods and the magnetometers. It is shown that the system stability degrades because of this alternate operation, supporting the proposed approach of extending the operation time of the magnetic rods.

Predicting Optimal Maneuvering Time Benefits for Satellite Attitude Control

Predicting Optimal Maneuvering Time Benefits for Satellite Attitude Control PDF Author: Yash D. Khatavkar
Publisher:
ISBN:
Category : Aerospace engineering
Languages : en
Pages : 60

Book Description
"A common goal of satellite control systems is to reduce the time required to change a spacecraft's attitude, which maximizes its mission capability. Time- optimal attitude control algorithms increase the agility of satellites such as imaging spacecraft, thus allowing a greater frequency of image collection. Eigenaxis based maneuvering, though common in industry and academia, fails to produce the minimum-time solution for actual satellites. Solving the optimal control problem is often challenging and requires evaluating multiple maneuver paths to ensure the shortest path is found for each spacecraft configuration. One of the primary difficulties in predicting optimal control benefits stems from the wide range of satellite configurations and infinite variation in inertia. To mitigate this issue, this research aims to determine an analytical relationship between satellite inertia and the time savings of using optimal control rather than eigenaxis maneuvering on spacecraft with a NASA standard four reaction-wheel configuration. To accomplish this, the development of a script using DIDO R optimization software determines minimum-time paths for satellite maneuvers. Each path was independently verified and validated using Pontryagin's minimization principle to ensure that they are physically feasible and that each solution is optimal. Additionally, this work demonstrates that inertia ratios can be used to characterize the attitude control performance of any spacecraft, allowing for the analysis of satellite inertias and their relationship to maneuver time reduction regardless of the scale of the spacecraft. The calculation of the agility envelope volume is then utilized in conjunction with the DIDO R script and various inertia ratios in order to investigate the mathematical relationship between satellite inertia and time savings from optimal control. The result of this work is a design-space tool that can be used by engineers to help determine whether or not to implement time-optimal control algorithms on any spacecraft in a simple and effective way."--from abstract.

Spacecraft Maneuver with Performance Guaranteed

Spacecraft Maneuver with Performance Guaranteed PDF Author: Yufeng Gao
Publisher: Springer Nature
ISBN: 9819946530
Category :
Languages : en
Pages : 452

Book Description


Dynamics and Real-time Optimal Control of Satellite Attitude and Satellite Formation Systems

Dynamics and Real-time Optimal Control of Satellite Attitude and Satellite Formation Systems PDF Author: Hui Yan
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
In this dissertation the solutions of the dynamics and real-time optimal control of magnetic attitude control and formation flying systems are presented. In magnetic attitude control, magnetic actuators for the time-optimal rest-to-rest maneuver with a pseudospectral algorithm are examined. The time-optimal magnetic control is bang-bang and the optimal slew time is about 232.7 seconds. The start time occurs when the maneuver is symmetric about the maximum field strength. For real-time computations, all the tested samples converge to optimal solutions or feasible solutions. We find the average computation time is about 0.45 seconds with the warm start and 19 seconds with the cold start, which is a great potential for real-time computations. Three-axis magnetic attitude stabilization is achieved by using a pseudospectral control law via the receding horizon control for satellites in eccentric low Earth orbits. The solutions from the pseudospectral control law are in excellent agreement with those obtained from the Riccati equation, but the computation speed improves by one order of magnitude. Numerical solutions show state responses quickly tend to the region where the attitude motion is in the steady state. Approximate models are often used for the study of relative motion of formation flying satellites. A modeling error index is introduced for evaluating and comparing the accuracy of various theories of the relative motion of satellites in order to determine the effect of modeling errors on the various theories. The numerical results show the sequence of the index from high to low should be Hill's equation, non- J2, small eccentricity, Gim-Alfriend state transition matrix index, with the unit sphere approach and the Yan-Alfriend nonlinear method having the lowest index and equivalent performance. A higher order state transition matrix is developed using unit sphere approach in the mean elements space. Based on the state transition matrix analytical control laws for formation flying maintenance and reconfiguration are proposed using low-thrust and impulsive scheme. The control laws are easily derived with high accuracy. Numerical solutions show the control law works well in real-time computations.

Fault-Tolerant Attitude Control of Spacecraft

Fault-Tolerant Attitude Control of Spacecraft PDF Author: Qinglei Hu
Publisher: Elsevier
ISBN: 0323901247
Category : Technology & Engineering
Languages : en
Pages : 306

Book Description
Fault-Tolerant Attitude Control of Spacecraft presents the fundamentals of spacecraft fault-tolerant attitude control systems, along with the most recent research and advanced, nonlinear control techniques. This book gives researchers a self-contained guide to the complex tasks of envisaging, designing, implementing and experimenting by presenting designs for integrated modeling, dynamics, fault-tolerant attitude control, and fault reconstruction for spacecraft. Specifically, the book gives a full literature review and presents preliminaries and mathematical models, robust fault-tolerant attitude control, fault-tolerant attitude control with actuator saturation, velocity-free fault tolerant attitude control, finite-time fault-tolerant attitude tracking control, and active fault-tolerant attitude contour. Finally, the book looks at the future of this interesting topic, offering readers a one-stop solution for those working on fault-tolerant attitude control for spacecraft. - Presents the fundamentals of fault-tolerant attitude control systems for spacecraft in one practical solution - Gives the latest research and thinking on nonlinear attitude control, fault tolerant control, and reliable attitude control - Brings together concepts in fault control theory, fault diagnosis, and attitude control for spacecraft - Covers advances in theory, technological aspects, and applications in spacecraft - Presents detailed numerical and simulation results to assist engineers - Offers a clear, systematic reference on fault-tolerant control and attitude control for spacecraft

Spacecraft Modeling, Attitude Determination, and Control

Spacecraft Modeling, Attitude Determination, and Control PDF Author: Yaguang Yang
Publisher: CRC Press
ISBN: 0429822138
Category : Science
Languages : en
Pages : 284

Book Description
This book discusses all spacecraft attitude control-related topics: spacecraft (including attitude measurements, actuator, and disturbance torques), modeling, spacecraft attitude determination and estimation, and spacecraft attitude controls. Unlike other books addressing these topics, this book focuses on quaternion-based methods because of its many merits. The book lays a brief, but necessary background on rotation sequence representations and frequently used reference frames that form the foundation of spacecraft attitude description. It then discusses the fundamentals of attitude determination using vector measurements, various efficient (including very recently developed) attitude determination algorithms, and the instruments and methods of popular vector measurements. With available attitude measurements, attitude control designs for inertial point and nadir pointing are presented in terms of required torques which are independent of actuators in use. Given the required control torques, some actuators are not able to generate the accurate control torques, therefore, spacecraft attitude control design methods with achievable torques for these actuators (for example, magnetic torque bars and control moment gyros) are provided. Some rigorous controllability results are provided. The book also includes attitude control in some special maneuvers, such as orbital-raising, docking and rendezvous, that are normally not discussed in similar books. Almost all design methods are based on state-spaced modern control approaches, such as linear quadratic optimal control, robust pole assignment control, model predictive control, and gain scheduling control. Applications of these methods to spacecraft attitude control problems are provided. Appendices are provided for readers who are not familiar with these topics.

Optimal Spacecraft Rotational Maneuvers

Optimal Spacecraft Rotational Maneuvers PDF Author: J.L. Junkins
Publisher: Elsevier
ISBN: 0444600310
Category : Technology & Engineering
Languages : en
Pages : 534

Book Description
This monograph has grown out of the authors' recent work directed toward solving a family of problems which arise in maneuvering modern spacecraft. The work ranges from fundamental developments in analytical dynamics and optimal control to a significant collection of example applications. The primary emphasis herein is upon the most central analytical and numerical methods for determining optimal rotational maneuvers of spacecraft. The authors focus especially upon the large angle nonlinear maneuvers, and also consider large rotational maneuvers of flexible vehicles with simultaneous vibration suppression/arrest. Each chapter includes a list of references.The book provides much new material which will be of great interest to practising professionals and advanced graduate students working in the general areas of spacecraft technology, applied mathematics, optimal control theory, and numerical optimization. Chapter 11 in particular presents new information that will be found widely useful for terminal control and tracking maneuvers.

Advances in Spacecraft Technologies

Advances in Spacecraft Technologies PDF Author: Jason Hall
Publisher: IntechOpen
ISBN: 9789533075518
Category : Technology & Engineering
Languages : en
Pages : 610

Book Description
The development and launch of the first artificial satellite Sputnik more than five decades ago propelled both the scientific and engineering communities to new heights as they worked together to develop novel solutions to the challenges of spacecraft system design. This symbiotic relationship has brought significant technological advances that have enabled the design of systems that can withstand the rigors of space while providing valuable space-based services. With its 26 chapters divided into three sections, this book brings together critical contributions from renowned international researchers to provide an outstanding survey of recent advances in spacecraft technologies. The first section includes nine chapters that focus on innovative hardware technologies while the next section is comprised of seven chapters that center on cutting-edge state estimation techniques. The final section contains eleven chapters that present a series of novel control methods for spacecraft orbit and attitude control.

Fundamentals of Spacecraft Attitude Determination and Control

Fundamentals of Spacecraft Attitude Determination and Control PDF Author: F. Landis Markley
Publisher: Springer
ISBN: 1493908022
Category : Technology & Engineering
Languages : en
Pages : 486

Book Description
This book explores topics that are central to the field of spacecraft attitude determination and control. The authors provide rigorous theoretical derivations of significant algorithms accompanied by a generous amount of qualitative discussions of the subject matter. The book documents the development of the important concepts and methods in a manner accessible to practicing engineers, graduate-level engineering students and applied mathematicians. It includes detailed examples from actual mission designs to help ease the transition from theory to practice and also provides prototype algorithms that are readily available on the author’s website. Subject matter includes both theoretical derivations and practical implementation of spacecraft attitude determination and control systems. It provides detailed derivations for attitude kinematics and dynamics and provides detailed description of the most widely used attitude parameterization, the quaternion. This title also provides a thorough treatise of attitude dynamics including Jacobian elliptical functions. It is the first known book to provide detailed derivations and explanations of state attitude determination and gives readers real-world examples from actual working spacecraft missions. The subject matter is chosen to fill the void of existing textbooks and treatises, especially in state and dynamics attitude determination. MATLAB code of all examples will be provided through an external website.

Design and Global Analysis of Spacecraft Attitude Control Systems

Design and Global Analysis of Spacecraft Attitude Control Systems PDF Author: George Meyer
Publisher:
ISBN:
Category : Space vehicles
Languages : en
Pages : 58

Book Description