Linear Algebraic Groups

Linear Algebraic Groups PDF Author: Armand Borel
Publisher: Springer Science & Business Media
ISBN: 1461209412
Category : Mathematics
Languages : en
Pages : 301

Book Description
This revised, enlarged edition of Linear Algebraic Groups (1969) starts by presenting foundational material on algebraic groups, Lie algebras, transformation spaces, and quotient spaces. It then turns to solvable groups, general properties of linear algebraic groups, and Chevally’s structure theory of reductive groups over algebraically closed groundfields. It closes with a focus on rationality questions over non-algebraically closed fields.

Algebraic Groups and Number Theory

Algebraic Groups and Number Theory PDF Author: Vladimir Platonov
Publisher: Academic Press
ISBN: 0080874592
Category : Mathematics
Languages : en
Pages : 629

Book Description
This milestone work on the arithmetic theory of linear algebraic groups is now available in English for the first time. Algebraic Groups and Number Theory provides the first systematic exposition in mathematical literature of the junction of group theory, algebraic geometry, and number theory. The exposition of the topic is built on a synthesis of methods from algebraic geometry, number theory, analysis, and topology, and the result is a systematic overview ofalmost all of the major results of the arithmetic theory of algebraic groups obtained to date.

Algebraic Groups

Algebraic Groups PDF Author: J. S. Milne
Publisher: Cambridge University Press
ISBN: 1107167485
Category : Mathematics
Languages : en
Pages : 665

Book Description
Comprehensive introduction to the theory of algebraic group schemes over fields, based on modern algebraic geometry, with few prerequisites.

Representations of Algebraic Groups

Representations of Algebraic Groups PDF Author: Jens Carsten Jantzen
Publisher: American Mathematical Soc.
ISBN: 082184377X
Category : Mathematics
Languages : en
Pages : 594

Book Description
Gives an introduction to the general theory of representations of algebraic group schemes. This title deals with representation theory of reductive algebraic groups and includes topics such as the description of simple modules, vanishing theorems, Borel-Bott-Weil theorem and Weyl's character formula, and Schubert schemes and lne bundles on them.

Introduction to Arithmetic Groups

Introduction to Arithmetic Groups PDF Author: Armand Borel
Publisher: American Mathematical Soc.
ISBN: 1470452316
Category : Education
Languages : en
Pages : 133

Book Description
Fifty years after it made the transition from mimeographed lecture notes to a published book, Armand Borel's Introduction aux groupes arithmétiques continues to be very important for the theory of arithmetic groups. In particular, Chapter III of the book remains the standard reference for fundamental results on reduction theory, which is crucial in the study of discrete subgroups of Lie groups and the corresponding homogeneous spaces. The review of the original French version in Mathematical Reviews observes that “the style is concise and the proofs (in later sections) are often demanding of the reader.” To make the translation more approachable, numerous footnotes provide helpful comments.

Adeles and Algebraic Groups

Adeles and Algebraic Groups PDF Author: A. Weil
Publisher: Springer Science & Business Media
ISBN: 1468491563
Category : Mathematics
Languages : en
Pages : 137

Book Description
This volume contains the original lecture notes presented by A. Weil in which the concept of adeles was first introduced, in conjunction with various aspects of C.L. Siegel’s work on quadratic forms. Serving as an introduction to the subject, these notes may also provide stimulation for further research.

Representation Theory of Finite Groups: Algebra and Arithmetic

Representation Theory of Finite Groups: Algebra and Arithmetic PDF Author: Steven H. Weintraub
Publisher: American Mathematical Soc.
ISBN: 0821832220
Category : Mathematics
Languages : en
Pages : 226

Book Description
``We explore widely in the valley of ordinary representations, and we take the reader over the mountain pass leading to the valley of modular representations, to a point from which (s)he can survey this valley, but we do not attempt to widely explore it. We hope the reader will be sufficiently fascinated by the scenery to further explore both valleys on his/her own.'' --from the Preface Representation theory plays important roles in geometry, algebra, analysis, and mathematical physics. In particular, representation theory has been one of the great tools in the study and classification of finite groups. There are some beautiful results that come from representation theory: Frobenius's Theorem, Burnside's Theorem, Artin's Theorem, Brauer's Theorem--all of which are covered in this textbook. Some seem uninspiring at first, but prove to be quite useful. Others are clearly deep from the outset. And when a group (finite or otherwise) acts on something else (as a set of symmetries, for example), one ends up with a natural representation of the group. This book is an introduction to the representation theory of finite groups from an algebraic point of view, regarding representations as modules over the group algebra. The approach is to develop the requisite algebra in reasonable generality and then to specialize it to the case of group representations. Methods and results particular to group representations, such as characters and induced representations, are developed in depth. Arithmetic comes into play when considering the field of definition of a representation, especially for subfields of the complex numbers. The book has an extensive development of the semisimple case, where the characteristic of the field is zero or is prime to the order of the group, and builds the foundations of the modular case, where the characteristic of the field divides the order of the group. The book assumes only the material of a standard graduate course in algebra. It is suitable as a text for a year-long graduate course. The subject is of interest to students of algebra, number theory and algebraic geometry. The systematic treatment presented here makes the book also valuable as a reference.

An Introduction to Algebraic Geometry and Algebraic Groups

An Introduction to Algebraic Geometry and Algebraic Groups PDF Author: Meinolf Geck
Publisher: Oxford University Press
ISBN: 019967616X
Category : Mathematics
Languages : en
Pages : 321

Book Description
An accessible text introducing algebraic groups at advanced undergraduate and early graduate level, this book covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups with a BN-pair, Frobenius maps on affine varieties and algebraic groups, zeta functions and Lefschetz numbers for varieties over finite fields.

Linear Algebraic Groups

Linear Algebraic Groups PDF Author: T.A. Springer
Publisher: Springer Science & Business Media
ISBN: 0817648402
Category : Mathematics
Languages : en
Pages : 347

Book Description
The first edition of this book presented the theory of linear algebraic groups over an algebraically closed field. The second edition, thoroughly revised and expanded, extends the theory over arbitrary fields, which are not necessarily algebraically closed. It thus represents a higher aim. As in the first edition, the book includes a self-contained treatment of the prerequisites from algebraic geometry and commutative algebra, as well as basic results on reductive groups. As a result, the first part of the book can well serve as a text for an introductory graduate course on linear algebraic groups.

Linear Algebraic Groups and Their Representations

Linear Algebraic Groups and Their Representations PDF Author: Richard S. Elman
Publisher: American Mathematical Soc.
ISBN: 0821851616
Category : Mathematics
Languages : en
Pages : 215

Book Description
* Brings together a wide variety of themes under a single unifying perspective The proceedings of a conference on Linear algebraic Groups and their Representations - the text gets to grips with the fundamental nature of this subject and its interaction with a wide variety of active areas in mathematics and physics.