Alfv?nic Instabilities and Fast Ion Transport in the DIII-D Tokamak PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Alfv?nic Instabilities and Fast Ion Transport in the DIII-D Tokamak PDF full book. Access full book title Alfv?nic Instabilities and Fast Ion Transport in the DIII-D Tokamak by . Download full books in PDF and EPUB format.

Alfv?nic Instabilities and Fast Ion Transport in the DIII-D Tokamak

Alfv?nic Instabilities and Fast Ion Transport in the DIII-D Tokamak PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Book Description
Neutral beam injection into reversed magnetic shear DIII-D plasmas produces a variety of Alfvenic activity including Toroidicity and Ellipticity induced Alfven Eigenmodes (TAE/EAE, respectively) and Reversed Shear Alfven Eigenmodes (RSAE) as well as their spatial coupling. These modes are typically studied during the discharge current ramp phase when incomplete current penetration results in a high central safety factor and strong drive due to multiple higher order resonances. During this same time period Fast-Ion D{sub {alpha}} (FIDA) spectroscopy shows that the central fast ion profile is flattened, the degree of which depends on the Alfven eigenmode amplitude. Interestingly, localized electron cyclotron heating (ECH) near the mode location stabilizes RSAE activity and results in significantly improved fast ion confinement relative to discharges with ECH deposition on axis. In these discharges, RSAE activity is suppressed when ECH is deposited near the radius of the shear reversal point and enhanced with deposition near the axis. To simulate the observed neutral beam ion redistribution, NOVA calculations of the 3D eigenmode structures are matched with experimental measurements and used in combination with the ORBIT guiding center following code. For fixed frequency eigenmodes, it is found that ORBIT calculations cannot explain the observed beam ion transport with experimentally measured mode amplitudes. Possible explanations are considered including recent simulation results incorporating eigenmodes with time dependent frequencies.

Alfv?nic Instabilities and Fast Ion Transport in the DIII-D Tokamak

Alfv?nic Instabilities and Fast Ion Transport in the DIII-D Tokamak PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Book Description
Neutral beam injection into reversed magnetic shear DIII-D plasmas produces a variety of Alfvenic activity including Toroidicity and Ellipticity induced Alfven Eigenmodes (TAE/EAE, respectively) and Reversed Shear Alfven Eigenmodes (RSAE) as well as their spatial coupling. These modes are typically studied during the discharge current ramp phase when incomplete current penetration results in a high central safety factor and strong drive due to multiple higher order resonances. During this same time period Fast-Ion D{sub {alpha}} (FIDA) spectroscopy shows that the central fast ion profile is flattened, the degree of which depends on the Alfven eigenmode amplitude. Interestingly, localized electron cyclotron heating (ECH) near the mode location stabilizes RSAE activity and results in significantly improved fast ion confinement relative to discharges with ECH deposition on axis. In these discharges, RSAE activity is suppressed when ECH is deposited near the radius of the shear reversal point and enhanced with deposition near the axis. To simulate the observed neutral beam ion redistribution, NOVA calculations of the 3D eigenmode structures are matched with experimental measurements and used in combination with the ORBIT guiding center following code. For fixed frequency eigenmodes, it is found that ORBIT calculations cannot explain the observed beam ion transport with experimentally measured mode amplitudes. Possible explanations are considered including recent simulation results incorporating eigenmodes with time dependent frequencies.

Velocity-space Resolved Fast-ion Measurements in the DIII-D Tokamak

Velocity-space Resolved Fast-ion Measurements in the DIII-D Tokamak PDF Author: Christopher Michael Muscatello
Publisher:
ISBN: 9781267260550
Category :
Languages : en
Pages : 150

Book Description
Superthermal ions in tokamak plasmas play a critical role in heating and current drive, and their confinement within the core of the plasma is crucial for obtaining ignition and sustaining burn in future reactors. At the DIII-D tokamak, a suite of fast-ion measurements is available to diagnose various properties of the superthermal population. This thesis work involves a contribution to DIII-D's fast-ion diagnostic collection: the 2nd generation fast-ion deuterium alpha (2G FIDA) detector. FIDA works on the principle of measuring the light that is emitted from neutralized fast ions that undergo charge exchange events with injected neutral atoms. 2G FIDA complements the other FIDA installations on DIII-D with its unique velocity-space sampling volume. Output from a synthetic diagnostic code (FIDAsim) that predicts FIDA emission levels is compared with measurements from 2G FIDA. We find that, while the predicted and measured shapes of the FIDA spectra agree well, the absolute magnitude of the spectral amplitudes are inconsistent. Results from various FIDAsim trials are presented adjusting several parameters, and it is hypothesized that mischaracterization of the diagnostic neutral beams is a major source of error. Instabilities in tokamaks can cause fast-ion transport. The sawtooth instability is particularly important because the crash phase has been observed to cause reductions up to 50% in the central fast-ion density. Passing ions of all energies are redistributed, but only low energy trapped ions suffer redistribution. The observations are consistent with transport by flux-attachment. Comparisons with theory suggest that the intensity of sawtooth-induced transport depends on the magnitude of toroidal drift. Instabilities characterized by toroidal and poloidal mode numbers and real frequency can coherently interact with energetic particles through mode-particle resonances. During a sawtooth crash, even fast ions whose energies are above the threshold for flux-attachment can experience transport if their orbits satisfy the bounce-precessional resonance condition. On DIII-D, a spatially localized population of beam ions accelerated above the injection energy by ion-cyclotron radio frequency (ICRF) heating is diminished at a sawtooth crash. Furthermore, fast-ion losses concurrent with sawtooth crashes are observed. Calculations show that mode-particle resonances could be responsible. Transport of energetic particles by resonant interactions pertains to many types of instabilities; other examples besides sawteeth will also be presented. Analysis shows that large amplitude modes cause significant resonant transport of fast particles. Even small amplitude modes can resonantly drive transport if multiple harmonics exist.

DIII-D Advanced Tokamak Research Overview

DIII-D Advanced Tokamak Research Overview PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Book Description
This paper reviews recent progress in the development of long-pulse, high performance discharges on the DIII-D tokamak. It is highlighted by a discharge achieving simultaneously [beta]{sub N}H of 9, bootstrap current fraction of 0.5, noninductive current fraction of 0.75, and sustained for 16 energy confinement times. The physics challenge has changed in the long-pulse regime. Non-ideal MHD modes are limiting the stability, fast ion driven modes may play a role in fast ion transport which limits the stored energy and plasma edge behavior can affect the global performance. New control tools are being developed to address these issues.

A Study of Prompt Fast Ion Losses from Neutral Beam Injection in the DIII-D Tokamak

A Study of Prompt Fast Ion Losses from Neutral Beam Injection in the DIII-D Tokamak PDF Author: Derek Aiden Sutherland
Publisher:
ISBN:
Category :
Languages : en
Pages : 29

Book Description
A study of the prompt losses of injected neutral beam born fast ions was conducted on the DIII-D tokamak at General Atomics using scintillator based fast ion loss detectors (FILD) and a reverse orbit calculation code. Prompt losses, also called first orbit losses, result from injected neutrals that are ionized on orbits that terminate to the outer wall before making a complete neoclassical, poloidal revolution. A strike map code has been developed which generates meshes that overlay optical fast ion signals from the FILD scintillator, providing a measurement of the pitch angles and gyroradii of incident fast ions. The pitch angles and gyroradii of incident ions are inputs to a reverse orbit calculation code used to calculate the trajectories of the incident ions in reverse time back to their birth at the intersection of the reverse orbit and an overlaid neutral beam injection footprint. The megahertz (MHz) sampling frequency of the FILD scintillator, along with finer time resolution neutral beam signals, enabled a comparison of the measured time delay between the onset of the neutral beam injection and the measured FILD loss signals with the calculated transit time based on the path length of the simulated reverse orbit. Consistency between the experimentally measured transit times and the simulation orbit times was observed. This result indicates the generated strike maps which provide a measurement of incident ions' gyroradii and pitch angles are accurate. This study supplements current studies seeking to improve the understanding of fast ion transport due to magnetohydrodynamic (MHD) activity, such as reverse shear Alfven eigenmodes (RSAEs) and toroidal Alfven eigenmodes (TAEs), which will be of great importance for predominately self-heated reactor scenarios.

Reduced Fast Ion Transport Model For The Tokamak Transport Code TRANSP.

Reduced Fast Ion Transport Model For The Tokamak Transport Code TRANSP. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Fast ion transport models presently implemented in the tokamak transport code TRANSP [R.J. Hawryluk, in Physics of Plasmas Close to Thermonuclear Conditions, CEC Brussels, 1, 19 (1980)] are not capturing important aspects of the physics associated with resonant transport caused by instabilities such as Toroidal Alfv en Eigenmodes (TAEs). This work describes the implementation of a fast ion transport model consistent with the basic mechanisms of resonant mode-particle interaction. The model is formulated in terms of a probability distribution function for the particle's steps in phase space, which is consistent with the MonteCarlo approach used in TRANSP. The proposed model is based on the analysis of fast ion response to TAE modes through the ORBIT code [R.B. White et al., Phys. Fluids 27, 2455 (1984)], but it can be generalized to higher frequency modes (e.g. Compressional and Global Alfv en Eigenmodes) and to other numerical codes or theories.

Resonance and Synergy Effects on Fast Ion Transport in Tokamaks

Resonance and Synergy Effects on Fast Ion Transport in Tokamaks PDF Author: Majid Khan
Publisher: LAP Lambert Academic Publishing
ISBN: 9783659206030
Category :
Languages : en
Pages : 176

Book Description
One of today's most challenging issues in energy physics and engineering is the utilization of nuclear fusion power which can provide a lasting energy supply on earth. In the context of designing and developing magnetic confinement fusion reactors, the behavior of high-energetic ions in tokamaks deserves careful examination in theory, experiments and simulations since these ions play a crucial role in achieving and sustaining favorable fusion conditions in the fuel plasma. Thus a burning deuterium (D)-tritium (T) plasma tends to become self-heated by fusion born alphas. Therefore the behavior of energetic alpha particles in a D-T fusion reactor, i.e. their transport and losses as well as their impact on plasma stability must be well understood. In this book we examine the trajectories and diffusion properties of fast alpha particles in a tokamak reactor. For that we employ an orbit following code using a symplectic integration algorithm which allows for accurate calculations of the ion trajectories over long time periods, even in the presence of magnetic and electric field perturbations. The investigations presented in the book are of scientific importance to fusion research.

Non-linear Wave-particle Interactions and Fast Ion Loss Induced by Multiple Alfvén Eigenmodes in the DIII-D Tokamak

Non-linear Wave-particle Interactions and Fast Ion Loss Induced by Multiple Alfvén Eigenmodes in the DIII-D Tokamak PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Observation of Energetic Particle Driven Modes Relevant to Advanced Tokamak Regimes

Observation of Energetic Particle Driven Modes Relevant to Advanced Tokamak Regimes PDF Author: R. Nazikian
Publisher:
ISBN:
Category : Alpha rays
Languages : en
Pages : 13

Book Description


Synergy Between Fast-ion Transport by Core MHD and Test Blanket Module Fields in DIII-D Experiments

Synergy Between Fast-ion Transport by Core MHD and Test Blanket Module Fields in DIII-D Experiments PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
We measured fast-ion transport caused by the combination of MHD and a mock-up test-blanket module (TBM) coil in the DIII-D tokamak. The primary diagnostic is an infrared camera that measures the heat flux on the tiles surrounding the coil. The combined effects of the TBM and four other potential sources of transport are studied: neoclassical tearing modes, Alfvén eigenmodes, sawteeth, and applied resonant magnetic perturbation fields for the control of edge localized modes. A definitive synergistic effect is observed at sawtooth crashes where, in the presence of the TBM, the localized heat flux at a burst increases from 0.36±0.27 to 2.6±0.5 MW/m-2.

Phase Space Effects on Fast Ion Distribution Function Modeling in Tokamaks

Phase Space Effects on Fast Ion Distribution Function Modeling in Tokamaks PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Integrated simulations of tokamak discharges typically rely on classical physics to model energetic particle (EP) dynamics. However, there are numerous cases in which energetic particles can suffer additional transport that is not classical in nature. Examples include transport by applied 3D magnetic perturbations and, more notably, by plasma instabilities. Focusing on the effects of instabilities, ad-hocmodels can empirically reproduce increased transport, but the choice of transport coefficients is usually somehow arbitrary. New approaches based on physics-based reduced models are being developed to address those issues in a simplified way, while retaining a more correct treatment of resonant wave-particle interactions. The kick model implemented in the tokamaktransport code TRANSP is an example of such reduced models. It includes modifications of the EP distribution by instabilities in real and velocity space, retaining correlations between transport in energy and space typical of resonant EP transport. The relevance of EP phase space modifications by instabilities is first discussed in terms of predicted fast ion distribution. Results are compared with those from a simple, ad-hoc diffusive model. It is then shown that the phase-space resolved model can also provide additional insight into important issues such as internal consistency of the simulations and mode stability through the analysis of the power exchanged between energetic particles and the instabilities.