Aerodynamic Performance Measurements of a Film-cooled Turbine Stage PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Aerodynamic Performance Measurements of a Film-cooled Turbine Stage PDF full book. Access full book title Aerodynamic Performance Measurements of a Film-cooled Turbine Stage by Rory Colm Keogh. Download full books in PDF and EPUB format.

Aerodynamic Performance Measurements of a Film-cooled Turbine Stage

Aerodynamic Performance Measurements of a Film-cooled Turbine Stage PDF Author: Rory Colm Keogh
Publisher:
ISBN:
Category :
Languages : en
Pages : 168

Book Description
(Cont.) The loss due to film-cooling is defined as the difference in performance between the film-cooled turbine and an ideal turbine with the same velocity triangles and airfoil Mach number distributions. However, there is no uncooled turbine geometry that will produce the same flow conditions as the film-cooled turbine stage, and consequently, there is no experimental baseline that can be tested to determine the loss due to film- cooling. A meanline velocity triangle model of the turbine stage was developed using published correlations and loss models to estimate the performance of this ideal stage. The model was calibrated against the baseline test results without coolant and it was then used to estimate the loss due to film-cooling. The estimated loss due to film-cooling was 3.0% at the design point, which corresponds to 0.3% per percent of coolant. The estimated repeatability (U95) for the efficiency measurement of the uncooled tur- bine geometry is ł 0.14%. Based on this measurement repeatability, the net effect of a design change can be determined with an uncertainty of just ł0.1% if four measurements are repeated for each design configuration. The estimated measurement uncertainty for the film-cooled stage efficiency is 0.55% and for back-to-back measurements the uncertainty is 0.45%.

Aerodynamic Performance Measurements of a Film-cooled Turbine Stage

Aerodynamic Performance Measurements of a Film-cooled Turbine Stage PDF Author: Rory Colm Keogh
Publisher:
ISBN:
Category :
Languages : en
Pages : 168

Book Description
(Cont.) The loss due to film-cooling is defined as the difference in performance between the film-cooled turbine and an ideal turbine with the same velocity triangles and airfoil Mach number distributions. However, there is no uncooled turbine geometry that will produce the same flow conditions as the film-cooled turbine stage, and consequently, there is no experimental baseline that can be tested to determine the loss due to film- cooling. A meanline velocity triangle model of the turbine stage was developed using published correlations and loss models to estimate the performance of this ideal stage. The model was calibrated against the baseline test results without coolant and it was then used to estimate the loss due to film-cooling. The estimated loss due to film-cooling was 3.0% at the design point, which corresponds to 0.3% per percent of coolant. The estimated repeatability (U95) for the efficiency measurement of the uncooled tur- bine geometry is ł 0.14%. Based on this measurement repeatability, the net effect of a design change can be determined with an uncertainty of just ł0.1% if four measurements are repeated for each design configuration. The estimated measurement uncertainty for the film-cooled stage efficiency is 0.55% and for back-to-back measurements the uncertainty is 0.45%.

Aerodynamic Performance Measurements of a Fully Scaled, Film-coated, Turbine Stage

Aerodynamic Performance Measurements of a Fully Scaled, Film-coated, Turbine Stage PDF Author: Christopher Michael Spadaccini
Publisher:
ISBN:
Category :
Languages : en
Pages : 148

Book Description


Film Cooling, Heat Transfer and Aerodynamic Measurements in a Three Stage Research Gas Turbine

Film Cooling, Heat Transfer and Aerodynamic Measurements in a Three Stage Research Gas Turbine PDF Author: Arun Suryanarayanan
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The existing 3-stage turbine research facility at the Turbomachinery Performance and Flow Research Laboratory (TPFL), Texas A and M University, is re-designed and newly installed to enable coolant gas injection on the first stage rotor platform to study the effects of rotation on film cooling and heat transfer. Pressure and temperature sensitive paint techniques are used to measure film cooling effectiveness and heat transfer on the rotor platform respectively. Experiments are conducted at three turbine rotational speeds namely, 2400rpm, 2550rpm and 3000rpm. Interstage aerodynamic measurements with miniature five hole probes are also acquired at these speeds. The aerodynamic data characterizes the flow along the first stage rotor exit, second stage stator exit and second stage rotor exit. For each rotor speed, film cooling effectiveness is determined on the first stage rotor platform for upstream stator-rotor gap ejection, downstream discrete hole ejection and a combination of upstream gap and downstream hole ejection. Upstream coolant ejection experiments are conducted for coolant to mainstream mass flow ratios of MFR=0.5%, 1.0%, 1.5% and 2.0% and downstream discrete hole injection tests corresponding to average hole blowing ratios of M = 0.5, 0.75, 1.0, 1.25, 1.5, 1.75 and 2.0 for each turbine speed. To provide a complete picture of hub cooling under rotating conditions, experiments with simultaneous injection of coolant gas through upstream and downstream injection are conducted for an of MFR=1% and Mholes=0.75, 1.0 and 1.25 for the three turbine speeds. Heat transfer coefficients are determined on the rotor platform for similar upstream and downstream coolant injection. Rotation is found to significantly affect the distribution of coolant on the platform. The measured effectiveness magnitudes are lower than that obtained with numerical simulations. Coolant streams from both upstream and downstream injection orient themselves towards the blade suction side. Passage vortex cuts-off the coolant film for the lower MFR for upstream injection. As the MFR increases, the passage vortex effects are diminished. Effectiveness was maximum when Mholes was closer to one as the coolant ejection velocity is approximately equal to the mainstream relative velocity for this blowing ratio. Heat transfer coefficient and film cooling effectiveness increase with increasing rotational speed for upstream rotor stator gap injection while for downstream hole injection the maximum effectiveness and heat transfer coefficients occur at the reference speed of 2550rpm.

Aerodynamic Performance of a Fully Film Cooled Core Turbine Vane Tested with Cold Air in a Two-dimensional Cascade

Aerodynamic Performance of a Fully Film Cooled Core Turbine Vane Tested with Cold Air in a Two-dimensional Cascade PDF Author: Roy G. Stabe
Publisher:
ISBN:
Category : Aircraft gas-turbines
Languages : en
Pages : 24

Book Description
The aerodynamic performance of a fully film cooled core turbine vane was investigated experimentally in a two-dimensional cascade of 10 vanes. Three of the 10 vanes were cooled; the others were solid (uncooled) vanes. Cold air was used for both the primary and coolant flows. The cascade test covered a range of pressure ratios corresponding to ideal exit critical velocity ratios of 0.6 to 0.95 and a range of coolant flow rates to 7.5 percent of the primary flow. The coolant flow was varied by changing the coolant supply pressure. The principal measurements were cross-channel surveys of exit total pressure, static pressure, and flow angle. The results presented include exit survey data and overall performance in terms of loss, flow angle, and weight flow for the range of exit velocity ratios and coolant flows investigated. The performance of the cooled vane is compared with the performance of an uncooled vane of the same profile and also with the performance obtained with a single cooled vane in the 10-vane cascade.

Axial Turbine Aerodynamics for Aero-engines

Axial Turbine Aerodynamics for Aero-engines PDF Author: Zhengping Zou
Publisher: Springer
ISBN: 9811057508
Category : Technology & Engineering
Languages : en
Pages : 572

Book Description
This book is a monograph on aerodynamics of aero-engine gas turbines focusing on the new progresses on flow mechanism and design methods in the recent 20 years. Starting with basic principles in aerodynamics and thermodynamics, this book systematically expounds the recent research on mechanisms of flows in axial gas turbines, including high pressure and low pressure turbines, inter-turbine ducts and turbine rear frame ducts, and introduces the classical and innovative numerical evaluation methods in different dimensions. This book also summarizes the latest research achievements in the field of gas turbine aerodynamic design and flow control, and the multidisciplinary conjugate problems involved with gas turbines. This book should be helpful for scientific and technical staffs, college teachers, graduate students, and senior college students, who are involved in research and design of gas turbines.

Gas Turbine Heat Transfer and Cooling Technology, Second Edition

Gas Turbine Heat Transfer and Cooling Technology, Second Edition PDF Author: Je-Chin Han
Publisher: CRC Press
ISBN: 1439855684
Category : Science
Languages : en
Pages : 892

Book Description
A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.

Effect of Cooling-hole Geometry on Aerodynamic Performance of a Film-cooled Turbine Van Tested with Cold Air in a Two-dimensional Cascade

Effect of Cooling-hole Geometry on Aerodynamic Performance of a Film-cooled Turbine Van Tested with Cold Air in a Two-dimensional Cascade PDF Author: John F. Kline
Publisher:
ISBN:
Category : Turbines
Languages : en
Pages : 52

Book Description


The Influence of Film Cooling on Turbine Aerodynamic Performance

The Influence of Film Cooling on Turbine Aerodynamic Performance PDF Author: Chia Hui Lim
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 364

Book Description


Advanced Multistage Turbine Blade Aerodynamics, Performance, Cooling, and Heat Transfer

Advanced Multistage Turbine Blade Aerodynamics, Performance, Cooling, and Heat Transfer PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 7

Book Description
The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows. Again, to verify and or direct the development of these advanced codes, complete three-dimensional unsteady flow field data are needed.