Aerodynamic Design Optimization Using Flow Feature Parameterization PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Aerodynamic Design Optimization Using Flow Feature Parameterization PDF full book. Access full book title Aerodynamic Design Optimization Using Flow Feature Parameterization by Thomas Robin Barrett. Download full books in PDF and EPUB format.

Aerodynamic Design Optimization Using Flow Feature Parameterization

Aerodynamic Design Optimization Using Flow Feature Parameterization PDF Author: Thomas Robin Barrett
Publisher:
ISBN:
Category :
Languages : en
Pages : 225

Book Description


Aerodynamic Design Optimization Using Flow Feature Parameterization

Aerodynamic Design Optimization Using Flow Feature Parameterization PDF Author: Thomas Robin Barrett
Publisher:
ISBN:
Category :
Languages : en
Pages : 225

Book Description


Aircraft Aerodynamic Design

Aircraft Aerodynamic Design PDF Author: András Sóbester
Publisher: John Wiley & Sons
ISBN: 1118534735
Category : Technology & Engineering
Languages : en
Pages : 276

Book Description
Optimal aircraft design is impossible without a parametric representation of the geometry of the airframe. We need a mathematical model equipped with a set of controls, or design variables, which generates different candidate airframe shapes in response to changes in the values of these variables. This model's objectives are to be flexible and concise, and capable of yielding a wide range of shapes with a minimum number of design variables. Moreover, the process of converting these variables into aircraft geometries must be robust. Alas, flexibility, conciseness and robustness can seldom be achieved simultaneously. Aircraft Aerodynamic Design: Geometry and Optimization addresses this problem by navigating the subtle trade-offs between the competing objectives of geometry parameterization. It beginswith the fundamentals of geometry-centred aircraft design, followed by a review of the building blocks of computational geometries, the curve and surface formulations at the heart of aircraft geometry. The authors then cover a range of legacy formulations in the build-up towards a discussion of the most flexible shape models used in aerodynamic design (with a focus on lift generating surfaces). The book takes a practical approach and includes MATLAB®, Python and Rhinoceros® code, as well as ‘real-life’ example case studies. Key features: Covers effective geometry parameterization within the context of design optimization Demonstrates how geometry parameterization is an important element of modern aircraft design Includes code and case studies which enable the reader to apply each theoretical concept either as an aid to understanding or as a building block of their own geometry model Accompanied by a website hosting codes Aircraft Aerodynamic Design: Geometry and Optimization is a practical guide for researchers and practitioners in the aerospace industry, and a reference for graduate and undergraduate students in aircraft design and multidisciplinary design optimization.

Recent Development of Aerodynamic Design Methodologies

Recent Development of Aerodynamic Design Methodologies PDF Author: Kozo Fujii
Publisher: Springer Science & Business Media
ISBN: 3322899527
Category : Technology & Engineering
Languages : en
Pages : 228

Book Description
Computational Fluid Dynamics (CFD) has made remarkable progress in the last two decades and is becoming an important, if not inevitable, analytical tool for both fundamental and practical fluid dynamics research. The analysis of flow fields is important in the sense that it improves the researcher's understanding of the flow features. CFD analysis also indirectly helps the design of new aircraft and/or spacecraft. However, design methodologies are the real need for the development of aircraft or spacecraft. They directly contribute to the design process and can significantly shorten the design cycle. Although quite a few publications have been written on this subject, most of the methods proposed were not used in practice in the past due to an immature research level and restrictions due to the inadequate computing capabilities. With the progress of high-speed computers, the time has come for such methods to be used practically. There is strong evidence of a growing interest in the development and use of aerodynamic inverse design and optimization techniques. This is true, not only for aerospace industries, but also for any industries requiring fluid dynamic design. This clearly shows the matured engineering need for optimum aerodynamic shape design methodologies. Therefore, it seems timely to publish a book in which eminent researchers in this area can elaborate on their research efforts and discuss it in conjunction with other efforts.

Simulation-driven Aerodynamic Design Using Variable-fidelity Models

Simulation-driven Aerodynamic Design Using Variable-fidelity Models PDF Author: Leifur Leifsson
Publisher: World Scientific
ISBN: 1783266309
Category : Technology & Engineering
Languages : en
Pages : 444

Book Description
Computer simulations is a fundamental tool of the design process in many engineering disciplines including aerospace engineering. However, although high-fidelity numerical models are accurate, they can be computationally expensive with evaluation time for a single design as long as hours, days or even weeks. Simulation-driven design using conventional optimization techniques may be therefore prohibitive.This book explores the alternative: performing computationally efficient design using surrogate-based optimization, where the high-fidelity model is replaced by its computationally cheap but still reasonably accurate representation: a surrogate. The emphasis is on physics-based surrogates. Application-wise, the focus is on aerodynamics and the methods and techniques described in the book are demonstrated using aerodynamic shape optimization cases. Applications in other engineering fields are also demonstrated.State-of-the-art techniques and a depth of coverage never published before make this a unique and essential book for all researchers working in aerospace and other engineering areas and dealing with optimization, computationally expensive design problems, and simulation-driven design.

Application of Surrogate-based Global Optimization to Aerodynamic Design

Application of Surrogate-based Global Optimization to Aerodynamic Design PDF Author: Emiliano Iuliano
Publisher: Springer
ISBN: 331921506X
Category : Technology & Engineering
Languages : en
Pages : 86

Book Description
Aerodynamic design, like many other engineering applications, is increasingly relying on computational power. The growing need for multi-disciplinarity and high fidelity in design optimization for industrial applications requires a huge number of repeated simulations in order to find an optimal design candidate. The main drawback is that each simulation can be computationally expensive – this becomes an even bigger issue when used within parametric studies, automated search or optimization loops, which typically may require thousands of analysis evaluations. The core issue of a design-optimization problem is the search process involved. However, when facing complex problems, the high-dimensionality of the design space and the high-multi-modality of the target functions cannot be tackled with standard techniques. In recent years, global optimization using meta-models has been widely applied to design exploration in order to rapidly investigate the design space and find sub-optimal solutions. Indeed, surrogate and reduced-order models can provide a valuable alternative at a much lower computational cost. In this context, this volume offers advanced surrogate modeling applications and optimization techniques featuring reasonable computational resources. It also discusses basic theory concepts and their application to aerodynamic design cases. It is aimed at researchers and engineers who deal with complex aerodynamic design problems on a daily basis and employ expensive simulations to solve them.

Aerodynamic Optimization by Simultaneously Updating Flow Variables and Design Parameters with Application to Advanced Propeller Designs

Aerodynamic Optimization by Simultaneously Updating Flow Variables and Design Parameters with Application to Advanced Propeller Designs PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781722053635
Category :
Languages : en
Pages : 38

Book Description
A scheme is developed for solving constrained optimization problems in which the objective function and the constraint function are dependent on the solution of the nonlinear flow equations. The scheme updates the design parameter iterative solutions and the flow variable iterative solutions simultaneously. It is applied to an advanced propeller design problem with the Euler equations used as the flow governing equations. The scheme's accuracy, efficiency and sensitivity to the computational parameters are tested. Rizk, Magdi H. Unspecified Center NAS3-24855; SBIR-01.01-8500; RTOP 535-03-01...

Aircraft Aerodynamic Design

Aircraft Aerodynamic Design PDF Author: András Sóbester
Publisher:
ISBN: 9781523123407
Category : Aerodynamics
Languages : en
Pages :

Book Description
"Optimal aircraft design is impossible without a parametric representation of the geometry of the airframe. We need a mathematical model equipped with a set of controls, or design variables, which generates different candidate airframe shapes in response to changes in the values of these variables. This model's objectives are to be flexible and concise, and capable of yielding a wide range of shapes with a minimum number of design variables. Moreover, the process of converting these variables into aircraft geometries must be robust. Alas, flexibility, conciseness and robustness can seldom be achieved simultaneously. Aircraft Aerodynamic Design: Geometry and Optimization addresses this problem by navigating the subtle trade-offs between the competing objectives of geometry parameterization. It beginswith the fundamentals of geometry-centred aircraft design, followed by a review of the building blocks of computational geometries, the curve and surface formulations at the heart of aircraft geometry. The authors then cover a range of legacy formulations in the build-up towards a discussion of the most flexible shape models used in aerodynamic design (with a focus on lift generating surfaces). The book takes a practical approach and includes MATLAB(r), Python and Rhinoceros(r) code, as well as 'real-life' example case studies. Key features: Covers effective geometry parameterization within the context of design optimization Demonstrates how geometry parameterization is an important element of modern aircraft design Includes code and case studies which enable the reader to apply each theoretical concept either as an aid to understanding or as a building block of their own geometry model Accompanied by a website hosting codes Aircraft Aerodynamic Design: Geometry and Optimization is a practical guide for researchers and practitioners in the aerospace industry, and a reference for graduate and undergraduate students in aircraft design and multidisciplinary design optimization"--

User's Manual for an Aerodynamic Optimization Scheeme That Updates Flow Variables and Design Parameters Simultaneously

User's Manual for an Aerodynamic Optimization Scheeme That Updates Flow Variables and Design Parameters Simultaneously PDF Author: National Aeronautics and Space Adm Nasa
Publisher:
ISBN: 9781728809021
Category :
Languages : en
Pages : 34

Book Description
This user's manual is presented for an aerodynamic optimization program that updates flow variables and design parameters simultaneously. The program was developed for solving constrained optimization problems in which the objective function and the constraint function are dependent on the solution of the nonlinear flow equations. The program was tested by applying it to the problem of optimizing propeller designs. Some reference to this particular application is therefore made in the manual. However, the optimization scheme is suitable for application to general aerodynamic design problems. A description of the approach used in the optimization scheme is first presented, followed by a description of the use of the program. Rizk, Magdi H. Unspecified Center NAS3-24855...

The Variational Method for Aerodynamic Optimization Using the Navier-Stokes Equations

The Variational Method for Aerodynamic Optimization Using the Navier-Stokes Equations PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 34

Book Description
This report describes the formulation of an aerodynamic shape design methodology using a compressible viscous flow model based on the Reynolds Averaged Navier Stokes equations. The aerodynamic shape is described by a set of geometrical design variables. The design problem is formulated as an optimization problem stated in terms of an aerodynamic objective functional which has to be minimized. The design scheme employs a gradient based optimization algorithm in order to obtain the optimum values of the design variables. The gradient of the aerodynamic functional with respect to the design variables is computed by means of the variational method, which requires the solution of an adjoint problem. The formulation of the adjoint problem is described which leads to a set of adjoint equations and boundary conditions. Using the flow variables and the adjoint variables, an expression for the gradient has been constructed. Computational results are presented for an inverse problem of an airfoil. It will be shown that, starting from an initial geometry of the NACA 0012 airfoil, the target pressure distribution and geometry of a best fit of the RAE 2822 airfoil in a transonic flow condition has been reconstructed successfully.

Engineering Design Optimization

Engineering Design Optimization PDF Author: Joaquim R. R. A. Martins
Publisher: Cambridge University Press
ISBN: 110898861X
Category : Mathematics
Languages : en
Pages : 653

Book Description
Based on course-tested material, this rigorous yet accessible graduate textbook covers both fundamental and advanced optimization theory and algorithms. It covers a wide range of numerical methods and topics, including both gradient-based and gradient-free algorithms, multidisciplinary design optimization, and uncertainty, with instruction on how to determine which algorithm should be used for a given application. It also provides an overview of models and how to prepare them for use with numerical optimization, including derivative computation. Over 400 high-quality visualizations and numerous examples facilitate understanding of the theory, and practical tips address common issues encountered in practical engineering design optimization and how to address them. Numerous end-of-chapter homework problems, progressing in difficulty, help put knowledge into practice. Accompanied online by a solutions manual for instructors and source code for problems, this is ideal for a one- or two-semester graduate course on optimization in aerospace, civil, mechanical, electrical, and chemical engineering departments.