Advances in Machine Learning Research and Application: 2013 Edition PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Advances in Machine Learning Research and Application: 2013 Edition PDF full book. Access full book title Advances in Machine Learning Research and Application: 2013 Edition by . Download full books in PDF and EPUB format.

Advances in Machine Learning Research and Application: 2013 Edition

Advances in Machine Learning Research and Application: 2013 Edition PDF Author:
Publisher: ScholarlyEditions
ISBN: 1481683195
Category : Computers
Languages : en
Pages : 1046

Book Description
Advances in Machine Learning Research and Application: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Artificial Intelligence. The editors have built Advances in Machine Learning Research and Application: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Artificial Intelligence in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Advances in Machine Learning Research and Application: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Advances in Machine Learning Research and Application: 2013 Edition

Advances in Machine Learning Research and Application: 2013 Edition PDF Author:
Publisher: ScholarlyEditions
ISBN: 1481683195
Category : Computers
Languages : en
Pages : 1046

Book Description
Advances in Machine Learning Research and Application: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Artificial Intelligence. The editors have built Advances in Machine Learning Research and Application: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Artificial Intelligence in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Advances in Machine Learning Research and Application: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Advanced Machine Learning Technologies and Applications

Advanced Machine Learning Technologies and Applications PDF Author: Aboul Ella Hassanien
Publisher: Springer
ISBN: 3642353266
Category : Computers
Languages : en
Pages : 606

Book Description
This book constitutes the refereed proceedings of the First International Conference on Advanced Machine Learning Technologies and Applications, AMLTA 2012, held in Cairo, Egypt, in December 2012. The 58 full papers presented were carefully reviewed and selected from 99 intial submissions. The papers are organized in topical sections on rough sets and applications, machine learning in pattern recognition and image processing, machine learning in multimedia computing, bioinformatics and cheminformatics, data classification and clustering, cloud computing and recommender systems.

Machine Learning and Deep Learning in Real-Time Applications

Machine Learning and Deep Learning in Real-Time Applications PDF Author: Mahrishi, Mehul
Publisher: IGI Global
ISBN: 1799830977
Category : Computers
Languages : en
Pages : 344

Book Description
Artificial intelligence and its various components are rapidly engulfing almost every professional industry. Specific features of AI that have proven to be vital solutions to numerous real-world issues are machine learning and deep learning. These intelligent agents unlock higher levels of performance and efficiency, creating a wide span of industrial applications. However, there is a lack of research on the specific uses of machine/deep learning in the professional realm. Machine Learning and Deep Learning in Real-Time Applications provides emerging research exploring the theoretical and practical aspects of machine learning and deep learning and their implementations as well as their ability to solve real-world problems within several professional disciplines including healthcare, business, and computer science. Featuring coverage on a broad range of topics such as image processing, medical improvements, and smart grids, this book is ideally designed for researchers, academicians, scientists, industry experts, scholars, IT professionals, engineers, and students seeking current research on the multifaceted uses and implementations of machine learning and deep learning across the globe.

Probabilistic Machine Learning

Probabilistic Machine Learning PDF Author: Kevin P. Murphy
Publisher: MIT Press
ISBN: 0262369303
Category : Computers
Languages : en
Pages : 858

Book Description
A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.

Deep Learning

Deep Learning PDF Author: Li Deng
Publisher:
ISBN: 9781601988140
Category : Machine learning
Languages : en
Pages : 212

Book Description
Provides an overview of general deep learning methodology and its applications to a variety of signal and information processing tasks

Artificial Intelligence in Healthcare

Artificial Intelligence in Healthcare PDF Author: Adam Bohr
Publisher: Academic Press
ISBN: 0128184396
Category : Computers
Languages : en
Pages : 385

Book Description
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data

Algorithmic Advances in Riemannian Geometry and Applications

Algorithmic Advances in Riemannian Geometry and Applications PDF Author: Hà Quang Minh
Publisher: Springer
ISBN: 3319450263
Category : Computers
Languages : en
Pages : 216

Book Description
This book presents a selection of the most recent algorithmic advances in Riemannian geometry in the context of machine learning, statistics, optimization, computer vision, and related fields. The unifying theme of the different chapters in the book is the exploitation of the geometry of data using the mathematical machinery of Riemannian geometry. As demonstrated by all the chapters in the book, when the data is intrinsically non-Euclidean, the utilization of this geometrical information can lead to better algorithms that can capture more accurately the structures inherent in the data, leading ultimately to better empirical performance. This book is not intended to be an encyclopedic compilation of the applications of Riemannian geometry. Instead, it focuses on several important research directions that are currently actively pursued by researchers in the field. These include statistical modeling and analysis on manifolds,optimization on manifolds, Riemannian manifolds and kernel methods, and dictionary learning and sparse coding on manifolds. Examples of applications include novel algorithms for Monte Carlo sampling and Gaussian Mixture Model fitting, 3D brain image analysis,image classification, action recognition, and motion tracking.

Probability for Statistics and Machine Learning

Probability for Statistics and Machine Learning PDF Author: Anirban DasGupta
Publisher: Springer Science & Business Media
ISBN: 1441996346
Category : Mathematics
Languages : en
Pages : 796

Book Description
This book provides a versatile and lucid treatment of classic as well as modern probability theory, while integrating them with core topics in statistical theory and also some key tools in machine learning. It is written in an extremely accessible style, with elaborate motivating discussions and numerous worked out examples and exercises. The book has 20 chapters on a wide range of topics, 423 worked out examples, and 808 exercises. It is unique in its unification of probability and statistics, its coverage and its superb exercise sets, detailed bibliography, and in its substantive treatment of many topics of current importance. This book can be used as a text for a year long graduate course in statistics, computer science, or mathematics, for self-study, and as an invaluable research reference on probabiliity and its applications. Particularly worth mentioning are the treatments of distribution theory, asymptotics, simulation and Markov Chain Monte Carlo, Markov chains and martingales, Gaussian processes, VC theory, probability metrics, large deviations, bootstrap, the EM algorithm, confidence intervals, maximum likelihood and Bayes estimates, exponential families, kernels, and Hilbert spaces, and a self contained complete review of univariate probability.

Advanced Machine Learning Technologies and Applications

Advanced Machine Learning Technologies and Applications PDF Author: Aboul Ella Hassanien
Publisher: Springer Nature
ISBN: 9811533830
Category : Technology & Engineering
Languages : en
Pages : 737

Book Description
This book presents the refereed proceedings of the 5th International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2020), held at Manipal University Jaipur, India, on February 13 – 15, 2020, and organized in collaboration with the Scientific Research Group in Egypt (SRGE). The papers cover current research in machine learning, big data, Internet of Things, biomedical engineering, fuzzy logic and security, as well as intelligence swarms and optimization.

Smart Card Research and Advanced Applications

Smart Card Research and Advanced Applications PDF Author: Vincent Grosso
Publisher: Springer Nature
ISBN: 3030973484
Category : Computers
Languages : en
Pages : 315

Book Description
This book constitutes the proceedings of the 20th International Conference on Smart Card Research and Advanced Applications, CARDIS 2021, which took place in November 2021. The conference took place in Lübeck, Germany, and changed to a hybrid format due to the COVID-19 pandemic. The 16 full papers presented in this volume were carefully reviewed and selected from 32 submissions. They were organized in topical sections named Side-Channel Attacks, Fault Attacks, Public Key and Secure Implementations.