Author: Tommaso Moramarco
Publisher: MDPI
ISBN: 3038429775
Category : Science
Languages : en
Pages : 201
Book Description
This book is a printed edition of the Special Issue "Advances in Hydro-Meteorological Monitoring" that was published in Water
Advances in Hydro-Meteorological Monitoring
Author: Tommaso Moramarco
Publisher: MDPI
ISBN: 3038429775
Category : Science
Languages : en
Pages : 201
Book Description
This book is a printed edition of the Special Issue "Advances in Hydro-Meteorological Monitoring" that was published in Water
Publisher: MDPI
ISBN: 3038429775
Category : Science
Languages : en
Pages : 201
Book Description
This book is a printed edition of the Special Issue "Advances in Hydro-Meteorological Monitoring" that was published in Water
Hydrometeorology
Author: Kevin Sene
Publisher: Springer Science & Business Media
ISBN: 904813403X
Category : Science
Languages : en
Pages : 356
Book Description
This book describes recent developments in hydrometeorological forecasting techniques for a range of timescales, from short term to seasonal and longer terms. It conveniently brings together both meteorological and hydrological aspects in a single volume.
Publisher: Springer Science & Business Media
ISBN: 904813403X
Category : Science
Languages : en
Pages : 356
Book Description
This book describes recent developments in hydrometeorological forecasting techniques for a range of timescales, from short term to seasonal and longer terms. It conveniently brings together both meteorological and hydrological aspects in a single volume.
Extreme Hydrology and Climate Variability
Author: Assefa Melesse
Publisher: Elsevier
ISBN: 0128159995
Category : Science
Languages : en
Pages : 584
Book Description
Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation and Mitigation is a compilation of contributions by experts from around the world who discuss extreme hydrology topics, from monitoring, to modeling and management. With extreme climatic and hydrologic events becoming so frequent, this book is a critical source, adding knowledge to the science of extreme hydrology. Topics covered include hydrometeorology monitoring, climate variability and trends, hydrological variability and trends, landscape dynamics, droughts, flood processes, and extreme events management, adaptation and mitigation. Each of the book's chapters provide background and theoretical foundations followed by approaches used and results of the applied studies. This book will be highly used by water resource managers and extreme event researchers who are interested in understanding the processes and teleconnectivity of large-scale climate dynamics and extreme events, predictability, simulation and intervention measures. - Presents datasets used and methods followed to support the findings included, allowing readers to follow these steps in their own research - Provides variable methodological approaches, thus giving the reader multiple hydrological modeling information to use in their work - Includes a variety of case studies, thus making the context of the book relatable to everyday working situations for those studying extreme hydrology - Discusses extreme event management, including adaption and mitigation
Publisher: Elsevier
ISBN: 0128159995
Category : Science
Languages : en
Pages : 584
Book Description
Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation and Mitigation is a compilation of contributions by experts from around the world who discuss extreme hydrology topics, from monitoring, to modeling and management. With extreme climatic and hydrologic events becoming so frequent, this book is a critical source, adding knowledge to the science of extreme hydrology. Topics covered include hydrometeorology monitoring, climate variability and trends, hydrological variability and trends, landscape dynamics, droughts, flood processes, and extreme events management, adaptation and mitigation. Each of the book's chapters provide background and theoretical foundations followed by approaches used and results of the applied studies. This book will be highly used by water resource managers and extreme event researchers who are interested in understanding the processes and teleconnectivity of large-scale climate dynamics and extreme events, predictability, simulation and intervention measures. - Presents datasets used and methods followed to support the findings included, allowing readers to follow these steps in their own research - Provides variable methodological approaches, thus giving the reader multiple hydrological modeling information to use in their work - Includes a variety of case studies, thus making the context of the book relatable to everyday working situations for those studying extreme hydrology - Discusses extreme event management, including adaption and mitigation
Handbook of Hydrometeorological Ensemble Forecasting
Author: Qingyun Duan
Publisher: Springer
ISBN: 9783642399244
Category : Science
Languages : en
Pages : 0
Book Description
Hydrometeorological prediction involves the forecasting of the state and variation of hydrometeorological elements -- including precipitation, temperature, humidity, soil moisture, river discharge, groundwater, etc.-- at different space and time scales. Such forecasts form an important scientific basis for informing public of natural hazards such as cyclones, heat waves, frosts, droughts and floods. Traditionally, and at most currently operational centers, hydrometeorological forecasts are deterministic, “single-valued” outlooks: i.e., the weather and hydrological models provide a single best guess of the magnitude and timing of the impending events. These forecasts suffer the obvious drawback of lacking uncertainty information that would help decision-makers assess the risks of forecast use. Recently, hydrometeorological ensemble forecast approaches have begun to be developed and used by operational collection of hydrometeorological services. In contrast to deterministic forecasts, ensemble forecasts are a multiple forecasts of the same events. The ensemble forecasts are generated by perturbing uncertain factors such as model forcings, initial conditions, and/or model physics. Ensemble techniques are attractive because they not only offer an estimate of the most probable future state of the hydrometeorological system, but also quantify the predictive uncertainty of a catastrophic hydrometeorological event occurring. The Hydrological Ensemble Prediction Experiment (HEPEX), initiated in 2004, has signaled a new era of collaboration toward the development of hydrometeorological ensemble forecasts. By bringing meteorologists, hydrologists and hydrometeorological forecast users together, HEPEX aims to improve operational hydrometeorological forecast approaches to a standard that can be used with confidence by emergencies and water resources managers. HEPEX advocates a hydrometeorological ensemble prediction system (HEPS) framework that consists of several basic building blocks. These components include:(a) an approach (typically statistical) for addressing uncertainty in meteorological inputs and generating statistically consistent space/time meteorological inputs for hydrological applications; (b) a land data assimilation approach for leveraging observation to reduce uncertainties in the initial and boundary conditions of the hydrological system; (c) approaches that address uncertainty in model parameters (also called ‘calibration’); (d) a hydrologic model or other approach for converting meteorological inputs into hydrological outputs; and finally (e) approaches for characterizing hydrological model output uncertainty. Also integral to HEPS is a verification system that can be used to evaluate the performance of all of its components. HEPS frameworks are being increasingly adopted by operational hydrometeorological agencies around the world to support risk management related to flash flooding, river and coastal flooding, drought, and water management. Real benefits of ensemble forecasts have been demonstrated in water emergence management decision making, optimization of reservoir operation, and other applications.
Publisher: Springer
ISBN: 9783642399244
Category : Science
Languages : en
Pages : 0
Book Description
Hydrometeorological prediction involves the forecasting of the state and variation of hydrometeorological elements -- including precipitation, temperature, humidity, soil moisture, river discharge, groundwater, etc.-- at different space and time scales. Such forecasts form an important scientific basis for informing public of natural hazards such as cyclones, heat waves, frosts, droughts and floods. Traditionally, and at most currently operational centers, hydrometeorological forecasts are deterministic, “single-valued” outlooks: i.e., the weather and hydrological models provide a single best guess of the magnitude and timing of the impending events. These forecasts suffer the obvious drawback of lacking uncertainty information that would help decision-makers assess the risks of forecast use. Recently, hydrometeorological ensemble forecast approaches have begun to be developed and used by operational collection of hydrometeorological services. In contrast to deterministic forecasts, ensemble forecasts are a multiple forecasts of the same events. The ensemble forecasts are generated by perturbing uncertain factors such as model forcings, initial conditions, and/or model physics. Ensemble techniques are attractive because they not only offer an estimate of the most probable future state of the hydrometeorological system, but also quantify the predictive uncertainty of a catastrophic hydrometeorological event occurring. The Hydrological Ensemble Prediction Experiment (HEPEX), initiated in 2004, has signaled a new era of collaboration toward the development of hydrometeorological ensemble forecasts. By bringing meteorologists, hydrologists and hydrometeorological forecast users together, HEPEX aims to improve operational hydrometeorological forecast approaches to a standard that can be used with confidence by emergencies and water resources managers. HEPEX advocates a hydrometeorological ensemble prediction system (HEPS) framework that consists of several basic building blocks. These components include:(a) an approach (typically statistical) for addressing uncertainty in meteorological inputs and generating statistically consistent space/time meteorological inputs for hydrological applications; (b) a land data assimilation approach for leveraging observation to reduce uncertainties in the initial and boundary conditions of the hydrological system; (c) approaches that address uncertainty in model parameters (also called ‘calibration’); (d) a hydrologic model or other approach for converting meteorological inputs into hydrological outputs; and finally (e) approaches for characterizing hydrological model output uncertainty. Also integral to HEPS is a verification system that can be used to evaluate the performance of all of its components. HEPS frameworks are being increasingly adopted by operational hydrometeorological agencies around the world to support risk management related to flash flooding, river and coastal flooding, drought, and water management. Real benefits of ensemble forecasts have been demonstrated in water emergence management decision making, optimization of reservoir operation, and other applications.
Advances in Hydro-Meteorological Monitoring
Author: Roberto Ranzi
Publisher:
ISBN: 9783038429784
Category :
Languages : en
Pages :
Book Description
Basin hydrology is related to the soil-atmosphere interaction driven by several blended processes constrained by the space-time variability of precipitation and soil moisture, along with overland flow and flood routing in natural channels. The emerging technologies for the monitoring and prediction of the spatial and temporal distribution of rainfall and soil moisture over a catchment, as well as the hillslope and river runoff, are of considerable interest to predict the hydrological responses of a catchment. In this context, this Special Issue, with its eleven theoretical and applied contributions, aims to shed light on the more recent advances in ground observations and remote sensing products, as well as on the benefits resulting from the integration of technological innovation and the development of new ideas in hydrology science. To this purpose, the accepted articles, written by leading researchers in their field, are intended to present and discuss experimental analyses at the catchment scale in terms of: a) intensive measurement campaigns of soil moisture by in situ sensors, remote sensing and modelling approaches; b) discharge monitoring also for high floods, by leveraging advanced technology for ground surface velocity measurements and spaceborne observations of water surface elevation, river width and slope; c) solid precipitation-measuring methods and the selection of snow gauge stations by merging meteorological, hydrological and remote sensing datasets; d) changes in daily precipitation of different intensities over large river basins along with the identification of the space-time rainfall field for different climatic regions ; and finally e) spatial evaporation patterns in different climate regions and assessment of the dominant climate factors affecting the evaporative demand of the atmosphere. Hopefully this Special Issue provides different useful insights into advancements in emerging technologies for the monitoring of key hydrological variables and will support the design of a scalable system of operational tools leading to suitable flood mitigation measures and reliable real-time warning systems.
Publisher:
ISBN: 9783038429784
Category :
Languages : en
Pages :
Book Description
Basin hydrology is related to the soil-atmosphere interaction driven by several blended processes constrained by the space-time variability of precipitation and soil moisture, along with overland flow and flood routing in natural channels. The emerging technologies for the monitoring and prediction of the spatial and temporal distribution of rainfall and soil moisture over a catchment, as well as the hillslope and river runoff, are of considerable interest to predict the hydrological responses of a catchment. In this context, this Special Issue, with its eleven theoretical and applied contributions, aims to shed light on the more recent advances in ground observations and remote sensing products, as well as on the benefits resulting from the integration of technological innovation and the development of new ideas in hydrology science. To this purpose, the accepted articles, written by leading researchers in their field, are intended to present and discuss experimental analyses at the catchment scale in terms of: a) intensive measurement campaigns of soil moisture by in situ sensors, remote sensing and modelling approaches; b) discharge monitoring also for high floods, by leveraging advanced technology for ground surface velocity measurements and spaceborne observations of water surface elevation, river width and slope; c) solid precipitation-measuring methods and the selection of snow gauge stations by merging meteorological, hydrological and remote sensing datasets; d) changes in daily precipitation of different intensities over large river basins along with the identification of the space-time rainfall field for different climatic regions ; and finally e) spatial evaporation patterns in different climate regions and assessment of the dominant climate factors affecting the evaporative demand of the atmosphere. Hopefully this Special Issue provides different useful insights into advancements in emerging technologies for the monitoring of key hydrological variables and will support the design of a scalable system of operational tools leading to suitable flood mitigation measures and reliable real-time warning systems.
Global Drought and Flood
Author: Huan Wu
Publisher: John Wiley & Sons
ISBN: 1119427215
Category : Science
Languages : en
Pages : 352
Book Description
Recent advances in the modeling and remote sensing of droughts and floods Droughts and floods are causing increasing damage worldwide, often with devastating short- and long-term impacts on human society. Forecasting when they will occur, monitoring them as they develop, and learning from the past to improve disaster management is vital. Global Drought and Flood: Observation, Modeling, and Prediction presents recent advances in the modeling and remote sensing of droughts and floods. It also describes the techniques and products currently available and how they are being used in practice. Volume highlights include: Remote sensing approaches for mapping droughts and floods Physical and statistical models for monitoring and forecasting hydrologic hazards Features of various drought and flood systems and products Use by governments, humanitarian, and development stakeholders in recent disaster cases Improving the collaboration between hazard information provision and end users The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
Publisher: John Wiley & Sons
ISBN: 1119427215
Category : Science
Languages : en
Pages : 352
Book Description
Recent advances in the modeling and remote sensing of droughts and floods Droughts and floods are causing increasing damage worldwide, often with devastating short- and long-term impacts on human society. Forecasting when they will occur, monitoring them as they develop, and learning from the past to improve disaster management is vital. Global Drought and Flood: Observation, Modeling, and Prediction presents recent advances in the modeling and remote sensing of droughts and floods. It also describes the techniques and products currently available and how they are being used in practice. Volume highlights include: Remote sensing approaches for mapping droughts and floods Physical and statistical models for monitoring and forecasting hydrologic hazards Features of various drought and flood systems and products Use by governments, humanitarian, and development stakeholders in recent disaster cases Improving the collaboration between hazard information provision and end users The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
Hydrology: Advances in Theory and Practice
Author: Nevil W. Quinn
Publisher: IWA Publishing
ISBN: 1789061423
Category : Science
Languages : en
Pages : 154
Book Description
Hydrology: Advances in Theory and Practice, brings together contributions to both the theory and practice of hydrology, including chapters on (amongst other topics) flood estimation methods and hydrological modelling. The book also looks forward with a global hydrology research agenda fit for the 2030s, and explores how to make advances in hydrological modelling – based on almost 50 years of modelling experience. In Focus – a book series that showcases the latest accomplishments in water research. Each book focuses on a specialist area with papers from top experts in the field. It aims to be a vehicle for in-depth understanding and inspire further conversations in the sector.
Publisher: IWA Publishing
ISBN: 1789061423
Category : Science
Languages : en
Pages : 154
Book Description
Hydrology: Advances in Theory and Practice, brings together contributions to both the theory and practice of hydrology, including chapters on (amongst other topics) flood estimation methods and hydrological modelling. The book also looks forward with a global hydrology research agenda fit for the 2030s, and explores how to make advances in hydrological modelling – based on almost 50 years of modelling experience. In Focus – a book series that showcases the latest accomplishments in water research. Each book focuses on a specialist area with papers from top experts in the field. It aims to be a vehicle for in-depth understanding and inspire further conversations in the sector.
Watershed Models
Author: Vijay P. Singh
Publisher: CRC Press
ISBN: 1420037439
Category : Science
Languages : en
Pages : 678
Book Description
Watershed modeling is at the heart of modern hydrology, supplying rich information that is vital to addressing resource planning, environmental, and social problems. Even in light of this important role, many books relegate the subject to a single chapter while books devoted to modeling focus only on a specific area of application. Recognizing the
Publisher: CRC Press
ISBN: 1420037439
Category : Science
Languages : en
Pages : 678
Book Description
Watershed modeling is at the heart of modern hydrology, supplying rich information that is vital to addressing resource planning, environmental, and social problems. Even in light of this important role, many books relegate the subject to a single chapter while books devoted to modeling focus only on a specific area of application. Recognizing the
Remote Sensing of Hydrometeorological Hazards
Author: George P. Petropoulos
Publisher: CRC Press
ISBN: 1351650971
Category : Mathematics
Languages : en
Pages : 507
Book Description
Extreme weather and climate change aggravate the frequency and magnitude of disasters. Facing atypical and more severe events, existing early warning and response systems become inadequate both in scale and scope. Earth Observation (EO) provides today information at global, regional and even basin scales related to agrometeorological hazards. This book focuses on drought, flood, frost, landslides, and storms/cyclones and covers different applications of EO data used from prediction to mapping damages as well as recovery for each category. It explains the added value of EO technology in comparison with conventional techniques applied today through many case studies.
Publisher: CRC Press
ISBN: 1351650971
Category : Mathematics
Languages : en
Pages : 507
Book Description
Extreme weather and climate change aggravate the frequency and magnitude of disasters. Facing atypical and more severe events, existing early warning and response systems become inadequate both in scale and scope. Earth Observation (EO) provides today information at global, regional and even basin scales related to agrometeorological hazards. This book focuses on drought, flood, frost, landslides, and storms/cyclones and covers different applications of EO data used from prediction to mapping damages as well as recovery for each category. It explains the added value of EO technology in comparison with conventional techniques applied today through many case studies.
Advances in Hydroinformatics
Author: Philippe Gourbesville
Publisher: Springer Nature
ISBN: 9811554366
Category : Science
Languages : en
Pages : 1056
Book Description
This book features a collection of extended papers based on presentations given at the SimHydro 2019 conference, held in Sophia Antipolis in June 2019 with the support of French Hydrotechnic Society (SHF), focusing on “Which models for extreme situations and crisis management?” Hydraulics and related disciplines are frequently applied in extreme situations that need to be understood accurately before implementing actions and defining appropriate mitigation measures. However, in such situations currently used models may be partly irrelevant due to factors like the new physical phenomena involved, the scale of the processes, and the hypothesis included in the different numerical tools. The availability of computational resources and new capacities like GPU offers modellers the opportunity to explore various approaches to provide information for decision-makers. At the same time, the topic of crisis management has sparked interest from stakeholders who need to share a common understanding of a situation. Hydroinfomatics tools can provide essential information in crises; however, the design and integration of models in decision-support systems require further development and the engagement of various communities, such as first responders. In this context, methodologies, guidelines and standards are more and more in demand in order to ensure that the systems developed are efficient and sustainable. Exploring both the limitations and performance of current models, this book presents the latest developments based on new numerical schemes, high-performance computing, multiphysics and multiscale methods, as well as better integration of field-scale model data. As such, it will appeal to practitioners, stakeholders, researchers and engineers active in this field.
Publisher: Springer Nature
ISBN: 9811554366
Category : Science
Languages : en
Pages : 1056
Book Description
This book features a collection of extended papers based on presentations given at the SimHydro 2019 conference, held in Sophia Antipolis in June 2019 with the support of French Hydrotechnic Society (SHF), focusing on “Which models for extreme situations and crisis management?” Hydraulics and related disciplines are frequently applied in extreme situations that need to be understood accurately before implementing actions and defining appropriate mitigation measures. However, in such situations currently used models may be partly irrelevant due to factors like the new physical phenomena involved, the scale of the processes, and the hypothesis included in the different numerical tools. The availability of computational resources and new capacities like GPU offers modellers the opportunity to explore various approaches to provide information for decision-makers. At the same time, the topic of crisis management has sparked interest from stakeholders who need to share a common understanding of a situation. Hydroinfomatics tools can provide essential information in crises; however, the design and integration of models in decision-support systems require further development and the engagement of various communities, such as first responders. In this context, methodologies, guidelines and standards are more and more in demand in order to ensure that the systems developed are efficient and sustainable. Exploring both the limitations and performance of current models, this book presents the latest developments based on new numerical schemes, high-performance computing, multiphysics and multiscale methods, as well as better integration of field-scale model data. As such, it will appeal to practitioners, stakeholders, researchers and engineers active in this field.