Advances in Fractional Calculus

Advances in Fractional Calculus PDF Author: J. Sabatier
Publisher: Springer Science & Business Media
ISBN: 1402060424
Category : Technology & Engineering
Languages : en
Pages : 550

Book Description
In the last two decades, fractional (or non integer) differentiation has played a very important role in various fields such as mechanics, electricity, chemistry, biology, economics, control theory and signal and image processing. For example, in the last three fields, some important considerations such as modelling, curve fitting, filtering, pattern recognition, edge detection, identification, stability, controllability, observability and robustness are now linked to long-range dependence phenomena. Similar progress has been made in other fields listed here. The scope of the book is thus to present the state of the art in the study of fractional systems and the application of fractional differentiation. As this volume covers recent applications of fractional calculus, it will be of interest to engineers, scientists, and applied mathematicians.

Advanced Topics in Fractional Differential Equations

Advanced Topics in Fractional Differential Equations PDF Author: Mouffak Benchohra
Publisher: Springer Nature
ISBN: 3031269284
Category : Mathematics
Languages : en
Pages : 190

Book Description
This book explores fractional differential equations with a fixed point approach. The authors highlight the existence, uniqueness, and stability results for various classes of fractional differential equations. All of the problems in the book also deal with some form of of the well-known Hilfer fractional derivative, which unifies the Riemann-Liouville and Caputo fractional derivatives. Classical and new fixed point theorems, associated with the measure of noncompactness in Banach spaces as well as several generalizations of the Gronwall's lemma, are employed as tools. The book is based on many years of research in this area, and provides suggestions for further study as well. The authors have included illustrations in order to support the readers’ understanding of the concepts presented. Includes illustrations in order to support readers understanding of the presented concepts · Approaches the topic of fractional differential equations while employing fixed point theorems as tools · Presents novel results, which build upon previous literature and many years of research by the authors

Topics in Fractional Differential Equations

Topics in Fractional Differential Equations PDF Author: Saïd Abbas
Publisher: Springer Science & Business Media
ISBN: 146144036X
Category : Mathematics
Languages : en
Pages : 403

Book Description
​​​ Topics in Fractional Differential Equations is devoted to the existence and uniqueness of solutions for various classes of Darboux problems for hyperbolic differential equations or inclusions involving the Caputo fractional derivative. ​​Fractional calculus generalizes the integrals and derivatives to non-integer orders. During the last decade, fractional calculus was found to play a fundamental role in the modeling of a considerable number of phenomena; in particular the modeling of memory-dependent and complex media such as porous media. It has emerged as an important tool for the study of dynamical systems where classical methods reveal strong limitations. Some equations present delays which may be finite, infinite, or state-dependent. Others are subject to an impulsive effect. The above problems are studied using the fixed point approach, the method of upper and lower solution, and the Kuratowski measure of noncompactness. This book is addressed to a wide audience of specialists such as mathematicians, engineers, biologists, and physicists. ​

Advances on Fractional Inequalities

Advances on Fractional Inequalities PDF Author: George A. Anastassiou
Publisher: Springer Science & Business Media
ISBN: 1461407036
Category : Mathematics
Languages : en
Pages : 123

Book Description
Advances on Fractional Inequalities use primarily the Caputo fractional derivative, as the most important in applications, and presents the first fractional differentiation inequalities of Opial type which involves the balanced fractional derivatives. The book continues with right and mixed fractional differentiation Ostrowski inequalities in the univariate and multivariate cases. Next the right and left, as well as mixed, Landau fractional differentiation inequalities in the univariate and multivariate cases are illustrated. Throughout the book many applications are given. Fractional differentiation inequalities are by themselves an important and great mathematical topic for research. Furthermore they have many applications, the most important ones are in establishing uniqueness of solution in fractional differential equations and systems and in fractional partial differential equations. Also they provide upper bounds to the solutions of the above equations. Fractional Calculus has emerged as very useful over the last forty years due to its many applications in almost all applied sciences. This is currently seen in applications in acoustic wave propagation in inhomogeneous porous material, diffusive transport, fluid flow, dynamical processes in self-similar structures, dynamics of earthquakes, optics, geology, viscoelastic materials, bio-sciences, bioengineering, medicine, economics, probability and statistics, astrophysics, chemical engineering, physics, splines, tomography, fluid mechanics, electromagnetic waves, nonlinear control, signal processing, control of power electronic, converters, chaotic dynamics, polymer science, proteins, polymer physics, electrochemistry, statistical physics, rheology, thermodynamics, neural networks, etc. Almost all fields of research in science and engineering use fractional calculus in order to describe results. This book is a part of Fractional Calculus, therefore it is useful for researchers and graduate students for research, seminars and advanced graduate courses, in pure and applied mathematics, engineering and all other applied sciences.

Fractional Differentiation Inequalities

Fractional Differentiation Inequalities PDF Author: George A. Anastassiou
Publisher: Springer Science & Business Media
ISBN: 0387981284
Category : Mathematics
Languages : en
Pages : 672

Book Description
In this book the author presents the Opial, Poincaré, Sobolev, Hilbert, and Ostrowski fractional differentiation inequalities. Results for the above are derived using three different types of fractional derivatives, namely by Canavati, Riemann-Liouville and Caputo. The univariate and multivariate cases are both examined. Each chapter is self-contained. The theory is presented systematically along with the applications. The application to information theory is also examined. This monograph is suitable for researchers and graduate students in pure mathematics. Applied mathematicians, engineers, and other applied scientists will also find this book useful.

Boundary Value Problems For Fractional Differential Equations And Systems

Boundary Value Problems For Fractional Differential Equations And Systems PDF Author: Bashir Ahmad
Publisher: World Scientific
ISBN: 9811224471
Category : Mathematics
Languages : en
Pages : 468

Book Description
This book is devoted to the study of existence of solutions or positive solutions for various classes of Riemann-Liouville and Caputo fractional differential equations, and systems of fractional differential equations subject to nonlocal boundary conditions. The monograph draws together many of the authors' results, that have been obtained and highly cited in the literature in the last four years.In each chapter, various examples are presented which support the main results. The methods used in the proof of these theorems include results from the fixed point theory and fixed point index theory. This volume can serve as a good resource for mathematical and scientific researchers, and for graduate students in mathematics and science interested in the existence of solutions for fractional differential equations and systems.

The Analysis of Fractional Differential Equations

The Analysis of Fractional Differential Equations PDF Author: Kai Diethelm
Publisher: Springer
ISBN: 3642145744
Category : Mathematics
Languages : en
Pages : 251

Book Description
Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.

Fractional Differential Equations And Inclusions: Classical And Advanced Topics

Fractional Differential Equations And Inclusions: Classical And Advanced Topics PDF Author: Said Abbas
Publisher: World Scientific
ISBN: 981126127X
Category : Mathematics
Languages : en
Pages : 326

Book Description
This monograph is devoted to the existence and stability (Ulam-Hyers-Rassias stability and asymptotic stability) of solutions for various classes of functional differential equations or inclusions involving the Hadamard or Hilfer fractional derivative. Some equations present delay which may be finite, infinite, or state-dependent. Others are subject to impulsive effect which may be fixed or non-instantaneous.Readers will find the book self-contained and unified in presentation. It provides the necessary background material required to go further into the subject and explores the rich research literature in detail. Each chapter concludes with a section devoted to notes and bibliographical remarks and all abstract results are illustrated by examples. The tools used include many classical and modern nonlinear analysis methods such as fixed-point theorems, as well as some notions of Ulam stability, attractivity and the measure of non-compactness as well as the measure of weak noncompactness. It is useful for researchers and graduate students for research, seminars, and advanced graduate courses, in pure and applied mathematics, physics, mechanics, engineering, biology, and all other applied sciences.

Advanced Topics in Applied Mathematics

Advanced Topics in Applied Mathematics PDF Author: Sudhakar Nair
Publisher: Cambridge University Press
ISBN: 1139499289
Category : Technology & Engineering
Languages : en
Pages : 233

Book Description
This book is ideal for engineering, physical science and applied mathematics students and professionals who want to enhance their mathematical knowledge. Advanced Topics in Applied Mathematics covers four essential applied mathematics topics: Green's functions, integral equations, Fourier transforms and Laplace transforms. Also included is a useful discussion of topics such as the Wiener–Hopf method, finite Hilbert transforms, the Cagniard–De Hoop method and the proper orthogonal decomposition. This book reflects Sudhakar Nair's long classroom experience and includes numerous examples of differential and integral equations from engineering and physics to illustrate the solution procedures. The text includes exercise sets at the end of each chapter and a solutions manual, which is available for instructors.

Advanced Numerical Methods for Differential Equations

Advanced Numerical Methods for Differential Equations PDF Author: Harendra Singh
Publisher: CRC Press
ISBN: 1000381080
Category : Technology & Engineering
Languages : en
Pages : 337

Book Description
Mathematical models are used to convert real-life problems using mathematical concepts and language. These models are governed by differential equations whose solutions make it easy to understand real-life problems and can be applied to engineering and science disciplines. This book presents numerical methods for solving various mathematical models. This book offers real-life applications, includes research problems on numerical treatment, and shows how to develop the numerical methods for solving problems. The book also covers theory and applications in engineering and science. Engineers, mathematicians, scientists, and researchers working on real-life mathematical problems will find this book useful.