Author: United States. Congress. House. Committee on Science and Technology
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 132
Book Description
Advanced Materials Research
Author: Stanislav Kolisnychenko
Publisher: Trans Tech Publications Ltd
ISBN: 3035735441
Category : Technology & Engineering
Languages : en
Pages : 110
Book Description
Special topic volume with invited peer reviewed papers only
Publisher: Trans Tech Publications Ltd
ISBN: 3035735441
Category : Technology & Engineering
Languages : en
Pages : 110
Book Description
Special topic volume with invited peer reviewed papers only
Thermoelectrics
Author: G.S. Nolas
Publisher: Springer Science & Business Media
ISBN: 3662045699
Category : Technology & Engineering
Languages : en
Pages : 296
Book Description
An in-depth analysis of thermoelectric theory, an overview of present day thermoelectric materials and devices, and updated information on the most studied thermoelectric materials development. The main emphasis is on a basic understanding of the concepts as well as experimental techniques needed to propel researchers towards new and novel classes of thermoelectric materials with enhanced properties.
Publisher: Springer Science & Business Media
ISBN: 3662045699
Category : Technology & Engineering
Languages : en
Pages : 296
Book Description
An in-depth analysis of thermoelectric theory, an overview of present day thermoelectric materials and devices, and updated information on the most studied thermoelectric materials development. The main emphasis is on a basic understanding of the concepts as well as experimental techniques needed to propel researchers towards new and novel classes of thermoelectric materials with enhanced properties.
Advanced Materials Science & Technology in China: A Roadmap to 2050
Author: Ke Lu
Publisher: Springer Science & Business Media
ISBN: 3642053181
Category : Science
Languages : en
Pages : 139
Book Description
As one of the eighteen field-specific reports comprising the comprehensive scope of the strategic general report of the Chinese Academy of Sciences, this sub-report addresses long-range planning for developing science and technology in the field of advanced materials science. They each craft a roadmap for their sphere of development to 2050. In their entirety, the general and sub-group reports analyze the evolution and laws governing the development of science and technology, describe the decisive impact of science and technology on the modernization process, predict that the world is on the eve of an impending S&T revolution, and call for China to be fully prepared for this new round of S&T advancement. Based on the detailed study of the demands on S&T innovation in China's modernization, the reports draw a framework for eight basic and strategic systems of socio-economic development with the support of science and technology, work out China's S&T roadmaps for the relevant eight basic and strategic systems in line with China's reality, further detail S&T initiatives of strategic importance to China's modernization, and provide S&T decision-makers with comprehensive consultations for the development of S&T innovation consistent with China's reality. Supported by illustrations and tables of data, the reports provide researchers, government officials and entrepreneurs with guidance concerning research directions, the planning process, and investment. Founded in 1949, the Chinese Academy of Sciences is the nation's highest academic institution in natural sciences. Its major responsibilities are to conduct research in basic and technological sciences, to undertake nationwide integrated surveys on natural resources and ecological environment, to provide the country with scientific data and consultations for government's decision-making, to undertake government-assigned projects with regard to key S&T problems in the process of socio-economic development, to initiate personnel training, and to promote China's high-tech enterprises through its active engagement in these areas.
Publisher: Springer Science & Business Media
ISBN: 3642053181
Category : Science
Languages : en
Pages : 139
Book Description
As one of the eighteen field-specific reports comprising the comprehensive scope of the strategic general report of the Chinese Academy of Sciences, this sub-report addresses long-range planning for developing science and technology in the field of advanced materials science. They each craft a roadmap for their sphere of development to 2050. In their entirety, the general and sub-group reports analyze the evolution and laws governing the development of science and technology, describe the decisive impact of science and technology on the modernization process, predict that the world is on the eve of an impending S&T revolution, and call for China to be fully prepared for this new round of S&T advancement. Based on the detailed study of the demands on S&T innovation in China's modernization, the reports draw a framework for eight basic and strategic systems of socio-economic development with the support of science and technology, work out China's S&T roadmaps for the relevant eight basic and strategic systems in line with China's reality, further detail S&T initiatives of strategic importance to China's modernization, and provide S&T decision-makers with comprehensive consultations for the development of S&T innovation consistent with China's reality. Supported by illustrations and tables of data, the reports provide researchers, government officials and entrepreneurs with guidance concerning research directions, the planning process, and investment. Founded in 1949, the Chinese Academy of Sciences is the nation's highest academic institution in natural sciences. Its major responsibilities are to conduct research in basic and technological sciences, to undertake nationwide integrated surveys on natural resources and ecological environment, to provide the country with scientific data and consultations for government's decision-making, to undertake government-assigned projects with regard to key S&T problems in the process of socio-economic development, to initiate personnel training, and to promote China's high-tech enterprises through its active engagement in these areas.
Advanced Materials and Processing
Author: Federal Coordinating Council for Science, Engineering, and Technology. Committee on Industry and Technology
Publisher:
ISBN:
Category : Materials science
Languages : en
Pages : 228
Book Description
Publisher:
ISBN:
Category : Materials science
Languages : en
Pages : 228
Book Description
Congressional Workshop on Advanced Materials Research and Development
Author: United States. Congress. House. Committee on Science and Technology
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 132
Book Description
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 132
Book Description
Advanced Materials
Author: Mahendra U. Gaikwad
Publisher: CRC Press
ISBN: 104019334X
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
Advanced materials are engineered to exhibit novel properties that confer superior performance in comparison with conventional materials. The performance of advanced materials is associated with toughness, hardness, and durability that can be used for high technological applications such as semiconductors, biomaterials, smart materials, or nanomaterials. Advanced Materials: Production, Characterization and Multidisciplinary Applications is focused on novel approaches for production of graphene and other 2D materials along with characterization techniques, discussing a wide range of applications in multidisciplinary areas of science and engineering. It provides a guiding light in the production, synthesis, and characterization of advanced materials by implementing appropriate techniques. The book has a multidisciplinary approach covering applications in electronics (sensors), engineering, biotechnology, medical (e.g., cancer treatment, drug delivery, cellular imaging), and biomedical (smart implants, drug delivery, and DIY health testing kits) fields. The authors cover the primary information of advanced and other 2D materials related to their production or synthesis via various methods, ranging from conventional to non‐conventional – such as lithography, photolithography (computer chips), electron beam lithography, etching, atomic layer deposition, chemical vapor deposition, hydrothermal process, and electrospinning, along with some comparative investigations. It also covers a comparison study over the current and future perspectives of advanced and other 2D materials. This book is aimed at researchers, academics, and professionals who are interested in understanding the novel approaches for synthesis of advanced materials.
Publisher: CRC Press
ISBN: 104019334X
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
Advanced materials are engineered to exhibit novel properties that confer superior performance in comparison with conventional materials. The performance of advanced materials is associated with toughness, hardness, and durability that can be used for high technological applications such as semiconductors, biomaterials, smart materials, or nanomaterials. Advanced Materials: Production, Characterization and Multidisciplinary Applications is focused on novel approaches for production of graphene and other 2D materials along with characterization techniques, discussing a wide range of applications in multidisciplinary areas of science and engineering. It provides a guiding light in the production, synthesis, and characterization of advanced materials by implementing appropriate techniques. The book has a multidisciplinary approach covering applications in electronics (sensors), engineering, biotechnology, medical (e.g., cancer treatment, drug delivery, cellular imaging), and biomedical (smart implants, drug delivery, and DIY health testing kits) fields. The authors cover the primary information of advanced and other 2D materials related to their production or synthesis via various methods, ranging from conventional to non‐conventional – such as lithography, photolithography (computer chips), electron beam lithography, etching, atomic layer deposition, chemical vapor deposition, hydrothermal process, and electrospinning, along with some comparative investigations. It also covers a comparison study over the current and future perspectives of advanced and other 2D materials. This book is aimed at researchers, academics, and professionals who are interested in understanding the novel approaches for synthesis of advanced materials.
Characterization and Control of Interfaces for High Quality Advanced Materials III
Author: Kevin Ewsuk
Publisher: John Wiley & Sons
ISBN: 047091713X
Category : Technology & Engineering
Languages : en
Pages : 403
Book Description
This proceedings volume features 59 peer-reviewed papers from ICCCI2009 on interface characterization and control technology, powder and composite processing, joining, the control of airborne particulates, new metallic glasses, and interface phenomena at high temperature. ICCCI2009 was supported by the Global COE Program “Center of Excellence for Advanced Structural and Functional Materials Design” lead by Professor Tomoyuki Kakeshita at Osaka University, the Project on Joining Technology for New Metallic Glasses and Inorganic Materials, the Institute of Materials Research (IMR) of Tohoku University, the Materials and Structures Laboratory (MSL) of the Tokyo Institute of Technology, Kobe Gakuin University, Hosokawa Powder Technology Foundation, the Japan JSPS 124th Committee, and the Joining and Welding Research Institute (JWRI) of Osaka University. Over 160 scientists and engineers from academia and industry from 18 different countries attended ICCCI2009 to see and discuss 140 invited and contributed presentations and posters on the state-of-the-art of interface characterization and control for particulate materials, joining, and nanotechnology.
Publisher: John Wiley & Sons
ISBN: 047091713X
Category : Technology & Engineering
Languages : en
Pages : 403
Book Description
This proceedings volume features 59 peer-reviewed papers from ICCCI2009 on interface characterization and control technology, powder and composite processing, joining, the control of airborne particulates, new metallic glasses, and interface phenomena at high temperature. ICCCI2009 was supported by the Global COE Program “Center of Excellence for Advanced Structural and Functional Materials Design” lead by Professor Tomoyuki Kakeshita at Osaka University, the Project on Joining Technology for New Metallic Glasses and Inorganic Materials, the Institute of Materials Research (IMR) of Tohoku University, the Materials and Structures Laboratory (MSL) of the Tokyo Institute of Technology, Kobe Gakuin University, Hosokawa Powder Technology Foundation, the Japan JSPS 124th Committee, and the Joining and Welding Research Institute (JWRI) of Osaka University. Over 160 scientists and engineers from academia and industry from 18 different countries attended ICCCI2009 to see and discuss 140 invited and contributed presentations and posters on the state-of-the-art of interface characterization and control for particulate materials, joining, and nanotechnology.
Advanced Materials Science and Engineering of Carbon
Author: Michio Inagaki
Publisher: Butterworth-Heinemann
ISBN: 9780124077898
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Carbon materials are exceptionally diverse in their preparation, structure, texture, and applications. In Advanced Materials Science and Engineering of Carbon, noted carbon scientist Michio Inagaki and his coauthors cover the most recent advances in carbon materials, including new techniques and processes, carbon materials synthesis, and up-to-date descriptions of current carbon-based materials, trends and applications. Beginning with the synthesis and preparation of nanocarbons, carbon nanotubes, and graphenes, the book then reviews recently developed carbonization techniques, such as templating, electrospinning, foaming, stress graphitization, and the formation of glass-like carbon. The last third of the book is devoted to applications, featuring coverage of carbon materials for energy storage, electrochemical capacitors, lithium-ion rechargeable batteries, and adsorptive storage of hydrogen and methane for environmental protection, photocatalysis, spilled oil recovery, and nuclear applications of isotropic high-density graphite.
Publisher: Butterworth-Heinemann
ISBN: 9780124077898
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Carbon materials are exceptionally diverse in their preparation, structure, texture, and applications. In Advanced Materials Science and Engineering of Carbon, noted carbon scientist Michio Inagaki and his coauthors cover the most recent advances in carbon materials, including new techniques and processes, carbon materials synthesis, and up-to-date descriptions of current carbon-based materials, trends and applications. Beginning with the synthesis and preparation of nanocarbons, carbon nanotubes, and graphenes, the book then reviews recently developed carbonization techniques, such as templating, electrospinning, foaming, stress graphitization, and the formation of glass-like carbon. The last third of the book is devoted to applications, featuring coverage of carbon materials for energy storage, electrochemical capacitors, lithium-ion rechargeable batteries, and adsorptive storage of hydrogen and methane for environmental protection, photocatalysis, spilled oil recovery, and nuclear applications of isotropic high-density graphite.
Advanced Thermoelectric Materials for Energy Harvesting Applications
Author: Saim Memon
Publisher: BoD – Books on Demand
ISBN: 1789845289
Category : Science
Languages : en
Pages : 142
Book Description
Advanced Thermoelectric Materials for Energy Harvesting Applications is a research-intensive textbook covering the fundamentals of thermoelectricity and the process of converting heat energy into electrical energy. It covers the design, implementation, and performance of existing and advanced thermoelectric materials. Chapters examine such topics as organic/inorganic thermoelectric materials, performance and behaviors of thermoelectric devices, and energy harvesting applications of thermoelectric devices.
Publisher: BoD – Books on Demand
ISBN: 1789845289
Category : Science
Languages : en
Pages : 142
Book Description
Advanced Thermoelectric Materials for Energy Harvesting Applications is a research-intensive textbook covering the fundamentals of thermoelectricity and the process of converting heat energy into electrical energy. It covers the design, implementation, and performance of existing and advanced thermoelectric materials. Chapters examine such topics as organic/inorganic thermoelectric materials, performance and behaviors of thermoelectric devices, and energy harvesting applications of thermoelectric devices.
Nano and Microstructural Design of Advanced Materials
Author: M. A. Meyers
Publisher: Elsevier
ISBN: 0080537235
Category : Technology & Engineering
Languages : en
Pages : 317
Book Description
The importance of the nanoscale effects has been recognized in materials research for over fifty years, but it is only recently that advanced characterization and fabrication methods are enabling scientists to build structures atom-by-atom or molecule-by molecule. The understanding and control of the nanostructure has been, to a large extent, made possible by new atomistic analysis and characterization methods pioneered by transmission electron microscopy. Nano and Microstructural Design of Advanced Materials focuses on the effective use of such advanced analysis and characterization techniques in the design of materials. - Teaches effective use of advanced analysis and characterization methods at an atomistic level - Contains many supporting examples of materials in which such design concepts have been successfully applied
Publisher: Elsevier
ISBN: 0080537235
Category : Technology & Engineering
Languages : en
Pages : 317
Book Description
The importance of the nanoscale effects has been recognized in materials research for over fifty years, but it is only recently that advanced characterization and fabrication methods are enabling scientists to build structures atom-by-atom or molecule-by molecule. The understanding and control of the nanostructure has been, to a large extent, made possible by new atomistic analysis and characterization methods pioneered by transmission electron microscopy. Nano and Microstructural Design of Advanced Materials focuses on the effective use of such advanced analysis and characterization techniques in the design of materials. - Teaches effective use of advanced analysis and characterization methods at an atomistic level - Contains many supporting examples of materials in which such design concepts have been successfully applied