Advanced Computational Materials Modeling PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Advanced Computational Materials Modeling PDF full book. Access full book title Advanced Computational Materials Modeling by Miguel Vaz Junior. Download full books in PDF and EPUB format.

Advanced Computational Materials Modeling

Advanced Computational Materials Modeling PDF Author: Miguel Vaz Junior
Publisher: John Wiley & Sons
ISBN: 3527632336
Category : Technology & Engineering
Languages : en
Pages : 453

Book Description
With its discussion of strategies for modeling complex materials using new numerical techniques, mainly those based on the finite element method, this monograph covers a range of topics including computational plasticity, multi-scale formulations, optimization and parameter identification, damage mechanics and nonlinear finite elements.

Advanced Computational Materials Modeling

Advanced Computational Materials Modeling PDF Author: Miguel Vaz Junior
Publisher: John Wiley & Sons
ISBN: 3527632336
Category : Technology & Engineering
Languages : en
Pages : 453

Book Description
With its discussion of strategies for modeling complex materials using new numerical techniques, mainly those based on the finite element method, this monograph covers a range of topics including computational plasticity, multi-scale formulations, optimization and parameter identification, damage mechanics and nonlinear finite elements.

Computational Materials Engineering

Computational Materials Engineering PDF Author: Koenraad George Frans Janssens
Publisher: Academic Press
ISBN: 0080555497
Category : Technology & Engineering
Languages : en
Pages : 359

Book Description
Computational Materials Engineering is an advanced introduction to the computer-aided modeling of essential material properties and behavior, including the physical, thermal and chemical parameters, as well as the mathematical tools used to perform simulations. Its emphasis will be on crystalline materials, which includes all metals. The basis of Computational Materials Engineering allows scientists and engineers to create virtual simulations of material behavior and properties, to better understand how a particular material works and performs and then use that knowledge to design improvements for particular material applications. The text displays knowledge of software designers, materials scientists and engineers, and those involved in materials applications like mechanical engineers, civil engineers, electrical engineers, and chemical engineers. Readers from students to practicing engineers to materials research scientists will find in this book a single source of the major elements that make up contemporary computer modeling of materials characteristics and behavior. The reader will gain an understanding of the underlying statistical and analytical tools that are the basis for modeling complex material interactions, including an understanding of computational thermodynamics and molecular kinetics; as well as various modeling systems. Finally, the book will offer the reader a variety of algorithms to use in solving typical modeling problems so that the theory presented herein can be put to real-world use. - Balanced coverage of fundamentals of materials modeling, as well as more advanced aspects of modeling, such as modeling at all scales from the atomic to the molecular to the macro-material - Concise, yet rigorous mathematical coverage of such analytical tools as the Potts type Monte Carlo method, cellular automata, phase field, dislocation dynamics and Finite Element Analysis in statistical and analytical modeling

Advanced Engineering Materials and Modeling

Advanced Engineering Materials and Modeling PDF Author: Ashutosh Tiwari
Publisher: John Wiley & Sons
ISBN: 1119242541
Category : Technology & Engineering
Languages : en
Pages : 528

Book Description
The engineering of materials with advanced features is driving the research towards the design of innovative materials with high performances. New materials often deliver the best solution for structural applications, precisely contributing towards the finest combination of mechanical properties and low weight. The mimicking of nature's principles lead to a new class of structural materials including biomimetic composites, natural hierarchical materials and smart materials. Meanwhile, computational modeling approaches are the valuable tools complementary to experimental techniques and provide significant information at the microscopic level and explain the properties of materials and their very existence. The modeling also provides useful insights to possible strategies to design and fabricate materials with novel and improved properties. The book brings together these two fascinating areas and offers a comprehensive view of cutting-edge research on materials interfaces and technologies the engineering materials. The topics covered in this book are divided into 2 parts: Engineering of Materials, Characterizations & Applications and Computational Modeling of Materials. The chapters include the following: Mechanical and resistance behavior of structural glass beams Nanocrystalline metal carbides - microstructure characterization SMA-reinforced laminated glass panel Sustainable sugarcane bagasse cellulose for papermaking Electrospun scaffolds for cardiac tissue engineering Bio-inspired composites Density functional theory for studying extended systems First principles based approaches for modeling materials Computer aided materials design Computational materials for stochastic electromagnets Computational methods for thermal analysis of heterogeneous materials Modelling of resistive bilayer structures Modeling tunneling of superluminal photons through Brain Microtubules Computer aided surgical workflow modeling Displaced multiwavelets and splitting algorithms

Integrated Computational Materials Engineering (ICME) for Metals

Integrated Computational Materials Engineering (ICME) for Metals PDF Author: Mark F. Horstemeyer
Publisher: John Wiley & Sons
ISBN: 1118342658
Category : Technology & Engineering
Languages : en
Pages : 474

Book Description
State-of-the-technology tools for designing, optimizing, and manufacturing new materials Integrated computational materials engineering (ICME) uses computational materials science tools within a holistic system in order to accelerate materials development, improve design optimization, and unify design and manufacturing. Increasingly, ICME is the preferred paradigm for design, development, and manufacturing of structural products. Written by one of the world's leading ICME experts, this text delivers a comprehensive, practical introduction to the field, guiding readers through multiscale materials processing modeling and simulation with easy-to-follow explanations and examples. Following an introductory chapter exploring the core concepts and the various disciplines that have contributed to the development of ICME, the text covers the following important topics with their associated length scale bridging methodologies: Macroscale continuum internal state variable plasticity and damage theory and multistage fatigue Mesoscale analysis: continuum theory methods with discrete features and methods Discrete dislocation dynamics simulations Atomistic modeling methods Electronics structures calculations Next, the author provides three chapters dedicated to detailed case studies, including "From Atoms to Autos: A Redesign of a Cadillac Control Arm," that show how the principles and methods of ICME work in practice. The final chapter examines the future of ICME, forecasting the development of new materials and engineering structures with the help of a cyberinfrastructure that has been recently established. Integrated Computational Materials Engineering (ICME) for Metals is recommended for both students and professionals in engineering and materials science, providing them with new state-of-the-technology tools for selecting, designing, optimizing, and manufacturing new materials. Instructors who adopt this text for coursework can take advantage of PowerPoint lecture notes, a questions and solutions manual, and tutorials to guide students through the models and codes discussed in the text.

Integral Materials Modeling

Integral Materials Modeling PDF Author: Günter Gottstein
Publisher: John Wiley & Sons
ISBN: 3527317112
Category : Technology & Engineering
Languages : en
Pages : 317

Book Description
Adopting a holistic approach to materials simulation, this monograph covers four very important structural materials: aluminum, carbon steels, superalloys, and plastics. Following an introduction to the concept of integral modeling, the book goes on to cover a wide range of production steps and usage, including melt flow and solidification behavior, coating, shaping, thermal treatment, deep drawing, hardness and ductility, damage initiation, and deformation behavior.

Computational Materials Science

Computational Materials Science PDF Author: Dierk Raabe
Publisher: Wiley-VCH
ISBN:
Category : Computers
Languages : en
Pages : 408

Book Description
Modeling and simulation play an ever increasing role in the development and optimization of materials. Computational Materials Science presents the most important approaches in this new interdisciplinary field of materials science and engineering. The reader will learn to assess which numerical method is appropriate for performing simulations at the various microstructural levels and how they can be coupled. This book addresses graduate students and professionals in materials science and engineering as well as materials-oriented physicists and mechanical engineers.

Handbook of Materials Modeling

Handbook of Materials Modeling PDF Author: Sidney Yip
Publisher: Springer Science & Business Media
ISBN: 1402032862
Category : Science
Languages : en
Pages : 2903

Book Description
The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.

Integrated Computational Materials Engineering (ICME) for Metals

Integrated Computational Materials Engineering (ICME) for Metals PDF Author: Mark F. Horstemeyer
Publisher: John Wiley & Sons
ISBN: 1119018382
Category : Technology & Engineering
Languages : en
Pages : 654

Book Description
Focuses entirely on demystifying the field and subject of ICME and provides step-by-step guidance on its industrial application via case studies This highly-anticipated follow-up to Mark F. Horstemeyer’s pedagogical book on Integrated Computational Materials Engineering (ICME) concepts includes engineering practice case studies related to the analysis, design, and use of structural metal alloys. A welcome supplement to the first book—which includes the theory and methods required for teaching the subject in the classroom—Integrated Computational Materials Engineering (ICME) For Metals: Concepts and Case Studies focuses on engineering applications that have occurred in industries demonstrating the ICME methodologies, and aims to catalyze industrial diffusion of ICME technologies throughout the world. The recent confluence of smaller desktop computers with enhanced computing power coupled with the emergence of physically-based material models has created the clear trend for modeling and simulation in product design, which helped create a need to integrate more knowledge into materials processing and product performance. Integrated Computational Materials Engineering (ICME) For Metals: Case Studies educates those seeking that knowledge with chapters covering: Body Centered Cubic Materials; Designing An Interatomic Potential For Fe-C Alloys; Phase-Field Crystal Modeling; Simulating Dislocation Plasticity in BCC Metals by Integrating Fundamental Concepts with Macroscale Models; Steel Powder Metal Modeling; Hexagonal Close Packed Materials; Multiscale Modeling of Pure Nickel; Predicting Constitutive Equations for Materials Design; and more. Presents case studies that connect modeling and simulation for different materials' processing methods for metal alloys Demonstrates several practical engineering problems to encourage industry to employ ICME ideas Introduces a new simulation-based design paradigm Provides web access to microstructure-sensitive models and experimental database Integrated Computational Materials Engineering (ICME) For Metals: Case Studies is a must-have book for researchers and industry professionals aiming to comprehend and employ ICME in the design and development of new materials.

Advanced Computational Methods in Mechanical and Materials Engineering

Advanced Computational Methods in Mechanical and Materials Engineering PDF Author: Ashwani Kumar
Publisher: CRC Press
ISBN: 1000483029
Category : Computers
Languages : en
Pages : 343

Book Description
This book provides in-depth knowledge to solve engineering, geometrical, mathematical, and scientific problems with the help of advanced computational methods with a focus on mechanical and materials engineering. Divided into three subsections covering design and fluids, thermal engineering and materials engineering, each chapter includes exhaustive literature review along with thorough analysis and future research scope. Major topics covered pertains to computational fluid dynamics, mechanical performance, design, and fabrication including wide range of applications in industries as automotive, aviation, electronics, nuclear and so forth. Covers computational methods in design and fluid dynamics with a focus on computational fluid dynamics Explains advanced material applications and manufacturing in labs using novel alloys and introduces properties in material Discusses fabrication of graphene reinforced magnesium metal matrix for orthopedic applications Illustrates simulation and optimization gear transmission, heat sink and heat exchangers application Provides unique problem-solution approach including solutions, methodology, experimental setup, and results validation This book is aimed at researchers, graduate students in mechanical engineering, computer fluid dynamics,fluid mechanics, computer modeling, machine parts, and mechatronics.

Modeling Materials

Modeling Materials PDF Author: Ellad B. Tadmor
Publisher: Cambridge University Press
ISBN: 1139500651
Category : Science
Languages : en
Pages : 789

Book Description
Material properties emerge from phenomena on scales ranging from Angstroms to millimeters, and only a multiscale treatment can provide a complete understanding. Materials researchers must therefore understand fundamental concepts and techniques from different fields, and these are presented in a comprehensive and integrated fashion for the first time in this book. Incorporating continuum mechanics, quantum mechanics, statistical mechanics, atomistic simulations and multiscale techniques, the book explains many of the key theoretical ideas behind multiscale modeling. Classical topics are blended with new techniques to demonstrate the connections between different fields and highlight current research trends. Example applications drawn from modern research on the thermo-mechanical properties of crystalline solids are used as a unifying focus throughout the text. Together with its companion book, Continuum Mechanics and Thermodynamics (Cambridge University Press, 2011), this work presents the complete fundamentals of materials modeling for graduate students and researchers in physics, materials science, chemistry and engineering.