Adaptive Wavelet Methods for Variational Formulations of Nonlinear Elliptic PDEs on Tensor-Product Domains

Adaptive Wavelet Methods for Variational Formulations of Nonlinear Elliptic PDEs on Tensor-Product Domains PDF Author: Roland Pabel
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832541020
Category : Mathematics
Languages : en
Pages : 336

Book Description
This thesis is concerned with the numerical solution of boundary value problems (BVPs) governed by nonlinear elliptic partial differential equations (PDEs). To iteratively solve such BVPs, it is of primal importance to develop efficient schemes that guarantee convergence of the numerically approximated PDE solutions towards the exact solution. The new adaptive wavelet theory guarantees convergence of adaptive schemes with fixed approximation rates. Furthermore, optimal, i.e., linear, complexity estimates of such adaptive solution methods have been established. These achievements are possible since wavelets allow for a completely new perspective to attack BVPs: namely, to represent PDEs in their original infinite dimensional realm. Wavelets in this context represent function bases with special analytical properties, e.g., the wavelets considered herein are piecewise polynomials, have compact support and norm equivalences between certain function spaces and the $ell_2$ sequence spaces of expansion coefficients exist. This theoretical framework is implemented in the course of this thesis in a truly dimensionally unrestricted adaptive wavelet program code, which allows one to harness the proven theoretical results for the first time when numerically solving the above mentioned BVPs. Numerical studies of 2D and 3D PDEs and BVPs demonstrate the feasibility and performance of the developed schemes. The BVPs are solved using an adaptive Uzawa algorithm, which requires repeated solution of nonlinear PDE sub-problems. This thesis presents for the first time a numerically competitive implementation of a new theoretical paradigm to solve nonlinear elliptic PDEs in arbitrary space dimensions with a complete convergence and complexity theory.

Multiscale, Nonlinear and Adaptive Approximation

Multiscale, Nonlinear and Adaptive Approximation PDF Author: Ronald DeVore
Publisher: Springer Science & Business Media
ISBN: 3642034136
Category : Mathematics
Languages : en
Pages : 671

Book Description
The book of invited articles offers a collection of high-quality papers in selected and highly topical areas of Applied and Numerical Mathematics and Approximation Theory which have some connection to Wolfgang Dahmen's scientific work. On the occasion of his 60th birthday, leading experts have contributed survey and research papers in the areas of Nonlinear Approximation Theory, Numerical Analysis of Partial Differential and Integral Equations, Computer-Aided Geometric Design, and Learning Theory. The main focus and common theme of all the articles in this volume is the mathematics building the foundation for most efficient numerical algorithms for simulating complex phenomena.

Mathematical Reviews

Mathematical Reviews PDF Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 1028

Book Description


Encyclopedia of Computational Mechanics

Encyclopedia of Computational Mechanics PDF Author: Erwin Stein
Publisher:
ISBN:
Category : Dynamics
Languages : en
Pages : 870

Book Description
The Encyclopedia of Computational Mechanics provides a comprehensive collection of knowledge about the theory and practice of computational mechanics.

Reduced Basis Methods for Partial Differential Equations

Reduced Basis Methods for Partial Differential Equations PDF Author: Alfio Quarteroni
Publisher: Springer
ISBN: 3319154311
Category : Mathematics
Languages : en
Pages : 305

Book Description
This book provides a basic introduction to reduced basis (RB) methods for problems involving the repeated solution of partial differential equations (PDEs) arising from engineering and applied sciences, such as PDEs depending on several parameters and PDE-constrained optimization. The book presents a general mathematical formulation of RB methods, analyzes their fundamental theoretical properties, discusses the related algorithmic and implementation aspects, and highlights their built-in algebraic and geometric structures. More specifically, the authors discuss alternative strategies for constructing accurate RB spaces using greedy algorithms and proper orthogonal decomposition techniques, investigate their approximation properties and analyze offline-online decomposition strategies aimed at the reduction of computational complexity. Furthermore, they carry out both a priori and a posteriori error analysis. The whole mathematical presentation is made more stimulating by the use of representative examples of applicative interest in the context of both linear and nonlinear PDEs. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The book will be ideal for upper undergraduate students and, more generally, people interested in scientific computing. All these pseudocodes are in fact implemented in a MATLAB package that is freely available at https://github.com/redbkit

Topics in Integral and Integro-Differential Equations

Topics in Integral and Integro-Differential Equations PDF Author: Harendra Singh
Publisher: Springer Nature
ISBN: 3030655091
Category : Technology & Engineering
Languages : en
Pages : 255

Book Description
This book includes different topics associated with integral and integro-differential equations and their relevance and significance in various scientific areas of study and research. Integral and integro-differential equations are capable of modelling many situations from science and engineering. Readers should find several useful and advanced methods for solving various types of integral and integro-differential equations in this book. The book is useful for graduate students, Ph.D. students, researchers and educators interested in mathematical modelling, applied mathematics, applied sciences, engineering, etc. Key Features • New and advanced methods for solving integral and integro-differential equations • Contains comparison of various methods for accuracy • Demonstrates the applicability of integral and integro-differential equations in other scientific areas • Examines qualitative as well as quantitative properties of solutions of various types of integral and integro-differential equations

Foundations of Computational Mathematics

Foundations of Computational Mathematics PDF Author: Ronald A. DeVore
Publisher: Cambridge University Press
ISBN: 9780521003490
Category : Mathematics
Languages : en
Pages : 418

Book Description
Collection of papers by leading researchers in computational mathematics, suitable for graduate students and researchers.

The Finite Element Method: Theory, Implementation, and Applications

The Finite Element Method: Theory, Implementation, and Applications PDF Author: Mats G. Larson
Publisher: Springer Science & Business Media
ISBN: 3642332870
Category : Computers
Languages : en
Pages : 403

Book Description
This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.​

Principles of Multiscale Modeling

Principles of Multiscale Modeling PDF Author: Weinan E
Publisher: Cambridge University Press
ISBN: 1107096545
Category : Mathematics
Languages : en
Pages : 485

Book Description
A systematic discussion of the fundamental principles, written by a leading contributor to the field.

Hierarchical Matrices: Algorithms and Analysis

Hierarchical Matrices: Algorithms and Analysis PDF Author: Wolfgang Hackbusch
Publisher: Springer
ISBN: 3662473240
Category : Mathematics
Languages : en
Pages : 532

Book Description
This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists in computational mathematics, physics, chemistry and engineering.