A User's Guide to Principal Components PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download A User's Guide to Principal Components PDF full book. Access full book title A User's Guide to Principal Components by J. Edward Jackson. Download full books in PDF and EPUB format.

A User's Guide to Principal Components

A User's Guide to Principal Components PDF Author: J. Edward Jackson
Publisher: John Wiley & Sons
ISBN: 0471725323
Category : Mathematics
Languages : en
Pages : 597

Book Description
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. From the Reviews of A User’s Guide to Principal Components "The book is aptly and correctly named–A User’s Guide. It is the kind of book that a user at any level, novice or skilled practitioner, would want to have at hand for autotutorial, for refresher, or as a general-purpose guide through the maze of modern PCA." –Technometrics "I recommend A User’s Guide to Principal Components to anyone who is running multivariate analyses, or who contemplates performing such analyses. Those who write their own software will find the book helpful in designing better programs. Those who use off-the-shelf software will find it invaluable in interpreting the results." –Mathematical Geology

A User's Guide to Principal Components

A User's Guide to Principal Components PDF Author: J. Edward Jackson
Publisher: John Wiley & Sons
ISBN: 0471725323
Category : Mathematics
Languages : en
Pages : 597

Book Description
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. From the Reviews of A User’s Guide to Principal Components "The book is aptly and correctly named–A User’s Guide. It is the kind of book that a user at any level, novice or skilled practitioner, would want to have at hand for autotutorial, for refresher, or as a general-purpose guide through the maze of modern PCA." –Technometrics "I recommend A User’s Guide to Principal Components to anyone who is running multivariate analyses, or who contemplates performing such analyses. Those who write their own software will find the book helpful in designing better programs. Those who use off-the-shelf software will find it invaluable in interpreting the results." –Mathematical Geology

Principal Components Analysis

Principal Components Analysis PDF Author: George H. Dunteman
Publisher: SAGE
ISBN: 9780803931046
Category : Mathematics
Languages : en
Pages : 98

Book Description
For anyone in need of a concise, introductory guide to principal components analysis, this book is a must. Through an effective use of simple mathematical-geometrical and multiple real-life examples (such as crime statistics, indicators of drug abuse, and educational expenditures) -- and by minimizing the use of matrix algebra -- the reader can quickly master and put this technique to immediate use.

Principal Component Analysis

Principal Component Analysis PDF Author: I.T. Jolliffe
Publisher: Springer Science & Business Media
ISBN: 1475719043
Category : Mathematics
Languages : en
Pages : 283

Book Description
Principal component analysis is probably the oldest and best known of the It was first introduced by Pearson (1901), techniques ofmultivariate analysis. and developed independently by Hotelling (1933). Like many multivariate methods, it was not widely used until the advent of electronic computers, but it is now weIl entrenched in virtually every statistical computer package. The central idea of principal component analysis is to reduce the dimen sionality of a data set in which there are a large number of interrelated variables, while retaining as much as possible of the variation present in the data set. This reduction is achieved by transforming to a new set of variables, the principal components, which are uncorrelated, and which are ordered so that the first few retain most of the variation present in all of the original variables. Computation of the principal components reduces to the solution of an eigenvalue-eigenvector problem for a positive-semidefinite symmetrie matrix. Thus, the definition and computation of principal components are straightforward but, as will be seen, this apparently simple technique has a wide variety of different applications, as weIl as a number of different deri vations. Any feelings that principal component analysis is a narrow subject should soon be dispelled by the present book; indeed some quite broad topics which are related to principal component analysis receive no more than a brief mention in the final two chapters.

Practical Guide To Principal Component Methods in R

Practical Guide To Principal Component Methods in R PDF Author: Alboukadel KASSAMBARA
Publisher: STHDA
ISBN: 1975721136
Category : Education
Languages : en
Pages : 171

Book Description
Although there are several good books on principal component methods (PCMs) and related topics, we felt that many of them are either too theoretical or too advanced. This book provides a solid practical guidance to summarize, visualize and interpret the most important information in a large multivariate data sets, using principal component methods in R. The visualization is based on the factoextra R package that we developed for creating easily beautiful ggplot2-based graphs from the output of PCMs. This book contains 4 parts. Part I provides a quick introduction to R and presents the key features of FactoMineR and factoextra. Part II describes classical principal component methods to analyze data sets containing, predominantly, either continuous or categorical variables. These methods include: Principal Component Analysis (PCA, for continuous variables), simple correspondence analysis (CA, for large contingency tables formed by two categorical variables) and Multiple CA (MCA, for a data set with more than 2 categorical variables). In Part III, you'll learn advanced methods for analyzing a data set containing a mix of variables (continuous and categorical) structured or not into groups: Factor Analysis of Mixed Data (FAMD) and Multiple Factor Analysis (MFA). Part IV covers hierarchical clustering on principal components (HCPC), which is useful for performing clustering with a data set containing only categorical variables or with a mixed data of categorical and continuous variables.

Generalized Principal Component Analysis

Generalized Principal Component Analysis PDF Author: René Vidal
Publisher: Springer
ISBN: 0387878114
Category : Science
Languages : en
Pages : 590

Book Description
This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc. This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book. René Vidal is a Professor of Biomedical Engineering and Director of the Vision Dynamics and Learning Lab at The Johns Hopkins University. Yi Ma is Executive Dean and Professor at the School of Information Science and Technology at ShanghaiTech University. S. Shankar Sastry is Dean of the College of Engineering, Professor of Electrical Engineering and Computer Science and Professor of Bioengineering at the University of California, Berkeley.

A User's Guide to Principal Components

A User's Guide to Principal Components PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Don't get bogged down in theoretical matters and computational techniques. Focus instead on practical aspects of data reduction and interpretation. Dealing with the "how-to-do-it" as well as the '"why-it-works," this paperback edition of a Wiley bestseller is designed for practitioners of principal component analysis. Among the topics explored are extension to p variables, scaling input data, inferential procedures, operations with group data, and vector interpretation.

An Introduction to Applied Multivariate Analysis with R

An Introduction to Applied Multivariate Analysis with R PDF Author: Brian Everitt
Publisher: Springer Science & Business Media
ISBN: 1441996508
Category : Mathematics
Languages : en
Pages : 284

Book Description
The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.

Statistics for Marketing and Consumer Research

Statistics for Marketing and Consumer Research PDF Author: Mario Mazzocchi
Publisher: SAGE
ISBN: 1446204014
Category : Business & Economics
Languages : en
Pages : 433

Book Description
Balancing simplicity with technical rigour, this practical guide to the statistical techniques essential to research in marketing and related fields, describes each method as well as showing how they are applied. The book is accompanied by two real data sets to replicate examples and with exercises to solve, as well as detailed guidance on the use of appropriate software including: - 750 powerpoint slides with lecture notes and step-by-step guides to run analyses in SPSS (also includes screenshots) - 136 multiple choice questions for tests This is augmented by in-depth discussion of topics including: - Sampling - Data management and statistical packages - Hypothesis testing - Cluster analysis - Structural equation modelling

Registries for Evaluating Patient Outcomes

Registries for Evaluating Patient Outcomes PDF Author: Agency for Healthcare Research and Quality/AHRQ
Publisher: Government Printing Office
ISBN: 1587634333
Category : Medical
Languages : en
Pages : 385

Book Description
This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.

Python Data Science Handbook

Python Data Science Handbook PDF Author: Jake VanderPlas
Publisher: "O'Reilly Media, Inc."
ISBN: 1491912138
Category : Computers
Languages : en
Pages : 609

Book Description
For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms