Visual Differential Geometry and Forms PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Visual Differential Geometry and Forms PDF full book. Access full book title Visual Differential Geometry and Forms by Tristan Needham. Download full books in PDF and EPUB format.

Visual Differential Geometry and Forms

Visual Differential Geometry and Forms PDF Author: Tristan Needham
Publisher: Princeton University Press
ISBN: 0691203709
Category : Mathematics
Languages : en
Pages : 530

Book Description
An inviting, intuitive, and visual exploration of differential geometry and forms Visual Differential Geometry and Forms fulfills two principal goals. In the first four acts, Tristan Needham puts the geometry back into differential geometry. Using 235 hand-drawn diagrams, Needham deploys Newton’s geometrical methods to provide geometrical explanations of the classical results. In the fifth act, he offers the first undergraduate introduction to differential forms that treats advanced topics in an intuitive and geometrical manner. Unique features of the first four acts include: four distinct geometrical proofs of the fundamentally important Global Gauss-Bonnet theorem, providing a stunning link between local geometry and global topology; a simple, geometrical proof of Gauss’s famous Theorema Egregium; a complete geometrical treatment of the Riemann curvature tensor of an n-manifold; and a detailed geometrical treatment of Einstein’s field equation, describing gravity as curved spacetime (General Relativity), together with its implications for gravitational waves, black holes, and cosmology. The final act elucidates such topics as the unification of all the integral theorems of vector calculus; the elegant reformulation of Maxwell’s equations of electromagnetism in terms of 2-forms; de Rham cohomology; differential geometry via Cartan’s method of moving frames; and the calculation of the Riemann tensor using curvature 2-forms. Six of the seven chapters of Act V can be read completely independently from the rest of the book. Requiring only basic calculus and geometry, Visual Differential Geometry and Forms provocatively rethinks the way this important area of mathematics should be considered and taught.

Visual Differential Geometry and Forms

Visual Differential Geometry and Forms PDF Author: Tristan Needham
Publisher: Princeton University Press
ISBN: 0691203709
Category : Mathematics
Languages : en
Pages : 530

Book Description
An inviting, intuitive, and visual exploration of differential geometry and forms Visual Differential Geometry and Forms fulfills two principal goals. In the first four acts, Tristan Needham puts the geometry back into differential geometry. Using 235 hand-drawn diagrams, Needham deploys Newton’s geometrical methods to provide geometrical explanations of the classical results. In the fifth act, he offers the first undergraduate introduction to differential forms that treats advanced topics in an intuitive and geometrical manner. Unique features of the first four acts include: four distinct geometrical proofs of the fundamentally important Global Gauss-Bonnet theorem, providing a stunning link between local geometry and global topology; a simple, geometrical proof of Gauss’s famous Theorema Egregium; a complete geometrical treatment of the Riemann curvature tensor of an n-manifold; and a detailed geometrical treatment of Einstein’s field equation, describing gravity as curved spacetime (General Relativity), together with its implications for gravitational waves, black holes, and cosmology. The final act elucidates such topics as the unification of all the integral theorems of vector calculus; the elegant reformulation of Maxwell’s equations of electromagnetism in terms of 2-forms; de Rham cohomology; differential geometry via Cartan’s method of moving frames; and the calculation of the Riemann tensor using curvature 2-forms. Six of the seven chapters of Act V can be read completely independently from the rest of the book. Requiring only basic calculus and geometry, Visual Differential Geometry and Forms provocatively rethinks the way this important area of mathematics should be considered and taught.

Geometry and the Imagination

Geometry and the Imagination PDF Author: D. Hilbert
Publisher: American Mathematical Soc.
ISBN: 1470463024
Category : Education
Languages : en
Pages : 357

Book Description
This remarkable book has endured as a true masterpiece of mathematical exposition. There are few mathematics books that are still so widely read and continue to have so much to offer—even after more than half a century has passed! The book is overflowing with mathematical ideas, which are always explained clearly and elegantly, and above all, with penetrating insight. It is a joy to read, both for beginners and experienced mathematicians. “Hilbert and Cohn-Vossen” is full of interesting facts, many of which you wish you had known before. It's also likely that you have heard those facts before, but surely wondered where they could be found. The book begins with examples of the simplest curves and surfaces, including thread constructions of certain quadrics and other surfaces. The chapter on regular systems of points leads to the crystallographic groups and the regular polyhedra in R 3 R3. In this chapter, they also discuss plane lattices. By considering unit lattices, and throwing in a small amount of number theory when necessary, they effortlessly derive Leibniz's series: π/4=1−1/3+1/5−1/7+−… π/4=1−1/3+1/5−1/7+−…. In the section on lattices in three and more dimensions, the authors consider sphere-packing problems, including the famous Kepler problem. One of the most remarkable chapters is “Projective Configurations”. In a short introductory section, Hilbert and Cohn-Vossen give perhaps the most concise and lucid description of why a general geometer would care about projective geometry and why such an ostensibly plain setup is truly rich in structure and ideas. Here, we see regular polyhedra again, from a different perspective. One of the high points of the chapter is the discussion of Schlafli's Double-Six, which leads to the description of the 27 lines on the general smooth cubic surface. As is true throughout the book, the magnificent drawings in this chapter immeasurably help the reader. A particularly intriguing section in the chapter on differential geometry is Eleven Properties of the Sphere. Which eleven properties of such a ubiquitous mathematical object caught their discerning eye and why? Many mathematicians are familiar with the plaster models of surfaces found in many mathematics departments. The book includes pictures of some of the models that are found in the Göttingen collection. Furthermore, the mysterious lines that mark these surfaces are finally explained! The chapter on kinematics includes a nice discussion of linkages and the geometry of configurations of points and rods that are connected and, perhaps, constrained in some way. This topic in geometry has become increasingly important in recent times, especially in applications to robotics. This is another example of a simple situation that leads to a rich geometry. It would be hard to overestimate the continuing influence Hilbert-Cohn-Vossen's book has had on mathematicians of this century. It surely belongs in the “pantheon” of great mathematics books.

The Geometry of Schemes

The Geometry of Schemes PDF Author: David Eisenbud
Publisher: Springer Science & Business Media
ISBN: 0387226397
Category : Mathematics
Languages : en
Pages : 265

Book Description
Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.

A Visual Introduction to Differential Forms and Calculus on Manifolds

A Visual Introduction to Differential Forms and Calculus on Manifolds PDF Author: Jon Pierre Fortney
Publisher: Springer
ISBN: 3319969927
Category : Mathematics
Languages : en
Pages : 470

Book Description
This book explains and helps readers to develop geometric intuition as it relates to differential forms. It includes over 250 figures to aid understanding and enable readers to visualize the concepts being discussed. The author gradually builds up to the basic ideas and concepts so that definitions, when made, do not appear out of nowhere, and both the importance and role that theorems play is evident as or before they are presented. With a clear writing style and easy-to- understand motivations for each topic, this book is primarily aimed at second- or third-year undergraduate math and physics students with a basic knowledge of vector calculus and linear algebra.

Elementary Topology

Elementary Topology PDF Author: O. Ya. Viro, O. A. Ivanov, N. Yu. Netsvetaev, V. M. Kharlamov
Publisher: American Mathematical Soc.
ISBN: 9780821886250
Category : Mathematics
Languages : en
Pages : 432

Book Description
This text contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment. Proofs of theorems are separated from their formulations and are gathered at the end of each chapter, making this book appear like a problem book and also giving it appeal to the expert as a handbook. The book includes about 1,000 exercises.

All the Mathematics You Missed

All the Mathematics You Missed PDF Author: Thomas A. Garrity
Publisher: 清华大学出版社有限公司
ISBN: 9787302090854
Category : Mathematics
Languages : en
Pages : 380

Book Description


Perspectives on the Teaching of Geometry for the 21st Century

Perspectives on the Teaching of Geometry for the 21st Century PDF Author: C. Mammana
Publisher: Springer Science & Business Media
ISBN: 9401152268
Category : Education
Languages : en
Pages : 353

Book Description
In recent years geometry seems to have lost large parts of its former central position in mathematics teaching in most countries. However, new trends have begun to counteract this tendency. There is an increasing awareness that geometry plays a key role in mathematics and learning mathematics. Although geometry has been eclipsed in the mathematics curriculum, research in geometry has blossomed as new ideas have arisen from inside mathematics and other disciplines, including computer science. Due to reassessment of the role of geometry, mathematics educators and mathematicians face new challenges. In the present ICMI study, the whole spectrum of teaching and learning of geometry is analysed. Experts from all over the world took part in this study, which was conducted on the basis of recent international research, case studies, and reports on actual school practice. This book will be of particular interest to mathematics educators and mathematicians who are involved in the teaching of geometry at all educational levels, as well as to researchers in mathematics education.

Advanced Calculus

Advanced Calculus PDF Author: James J. Callahan
Publisher: Springer Science & Business Media
ISBN: 144197332X
Category : Mathematics
Languages : en
Pages : 542

Book Description
With a fresh geometric approach that incorporates more than 250 illustrations, this textbook sets itself apart from all others in advanced calculus. Besides the classical capstones--the change of variables formula, implicit and inverse function theorems, the integral theorems of Gauss and Stokes--the text treats other important topics in differential analysis, such as Morse's lemma and the Poincaré lemma. The ideas behind most topics can be understood with just two or three variables. The book incorporates modern computational tools to give visualization real power. Using 2D and 3D graphics, the book offers new insights into fundamental elements of the calculus of differentiable maps. The geometric theme continues with an analysis of the physical meaning of the divergence and the curl at a level of detail not found in other advanced calculus books. This is a textbook for undergraduates and graduate students in mathematics, the physical sciences, and economics. Prerequisites are an introduction to linear algebra and multivariable calculus. There is enough material for a year-long course on advanced calculus and for a variety of semester courses--including topics in geometry. The measured pace of the book, with its extensive examples and illustrations, make it especially suitable for independent study.

The Geometry of Physics

The Geometry of Physics PDF Author: Theodore Frankel
Publisher: Cambridge University Press
ISBN: 1139505610
Category : Mathematics
Languages : en
Pages : 749

Book Description
This book provides a working knowledge of those parts of exterior differential forms, differential geometry, algebraic and differential topology, Lie groups, vector bundles and Chern forms that are essential for a deeper understanding of both classical and modern physics and engineering. Included are discussions of analytical and fluid dynamics, electromagnetism (in flat and curved space), thermodynamics, the Dirac operator and spinors, and gauge fields, including Yang–Mills, the Aharonov–Bohm effect, Berry phase and instanton winding numbers, quarks and quark model for mesons. Before discussing abstract notions of differential geometry, geometric intuition is developed through a rather extensive introduction to the study of surfaces in ordinary space. The book is ideal for graduate and advanced undergraduate students of physics, engineering or mathematics as a course text or for self study. This third edition includes an overview of Cartan's exterior differential forms, which previews many of the geometric concepts developed in the text.

Visual Complex Analysis

Visual Complex Analysis PDF Author: Tristan Needham
Publisher: Oxford University Press
ISBN: 9780198534464
Category : Mathematics
Languages : en
Pages : 620

Book Description
This radical first course on complex analysis brings a beautiful and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack of advanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicated with the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.