Author: Björn Schelter
Publisher: John Wiley & Sons
ISBN: 3527609512
Category : Science
Languages : en
Pages : 514
Book Description
This handbook provides an up-to-date survey of current research topics and applications of time series analysis methods written by leading experts in their fields. It covers recent developments in univariate as well as bivariate and multivariate time series analysis techniques ranging from physics' to life sciences' applications. Each chapter comprises both methodological aspects and applications to real world complex systems, such as the human brain or Earth's climate. Covering an exceptionally broad spectrum of topics, beginners, experts and practitioners who seek to understand the latest developments will profit from this handbook.
Handbook of Time Series Analysis
Author: Björn Schelter
Publisher: John Wiley & Sons
ISBN: 3527609512
Category : Science
Languages : en
Pages : 514
Book Description
This handbook provides an up-to-date survey of current research topics and applications of time series analysis methods written by leading experts in their fields. It covers recent developments in univariate as well as bivariate and multivariate time series analysis techniques ranging from physics' to life sciences' applications. Each chapter comprises both methodological aspects and applications to real world complex systems, such as the human brain or Earth's climate. Covering an exceptionally broad spectrum of topics, beginners, experts and practitioners who seek to understand the latest developments will profit from this handbook.
Publisher: John Wiley & Sons
ISBN: 3527609512
Category : Science
Languages : en
Pages : 514
Book Description
This handbook provides an up-to-date survey of current research topics and applications of time series analysis methods written by leading experts in their fields. It covers recent developments in univariate as well as bivariate and multivariate time series analysis techniques ranging from physics' to life sciences' applications. Each chapter comprises both methodological aspects and applications to real world complex systems, such as the human brain or Earth's climate. Covering an exceptionally broad spectrum of topics, beginners, experts and practitioners who seek to understand the latest developments will profit from this handbook.
A Combined Parametric and Nonparametric Approach to Time Series Analysis
Author: Stefan Kriebol
Publisher: IOS Press
ISBN: 9781586031206
Category : Mathematics
Languages : en
Pages : 150
Book Description
The analysis and prediction of natural phenomena is an interesting and challenging task. Time series obtained from the observation of one or more features of a phenomenon are often the only access to the data generating system. Unfortunately, time series analysis is usually done by specialists in the field of the phenomenon with traditional analysis techniques. The application of modern analysis and prediction tools is often avoided due to their complexity or the risk of failure. This issue can be surmounted by an interdisciplinary approach. This work is an example for the possible synergetic effect of interdisciplinary research. In the field of oceanography the coastal upwelling phenomenon is analysed in experimental studies with a numerical model in order to develop a parametric prediction model. Artificial neural networks seem to be a suitable parametric model. However, in the field of computer science traditional artificial neural techniques showed limitations in the analysis and prediction of time series obtained from natural phenomena, particularly with nonlinear and nonstationary time series. Motivated by this limitations a new approach to time series analysis and prediction is presented in this work, the mixture of nonparametric segmented experts (MONSE). The MONSE approach is exploiting the synergetic effect of a combined nonparametric and parametric analysis. It is supposed to be applied to explorative time series analysis and prediction in various fields, i.e. in a context where hardly any kowledge about the time series of concern is available.
Publisher: IOS Press
ISBN: 9781586031206
Category : Mathematics
Languages : en
Pages : 150
Book Description
The analysis and prediction of natural phenomena is an interesting and challenging task. Time series obtained from the observation of one or more features of a phenomenon are often the only access to the data generating system. Unfortunately, time series analysis is usually done by specialists in the field of the phenomenon with traditional analysis techniques. The application of modern analysis and prediction tools is often avoided due to their complexity or the risk of failure. This issue can be surmounted by an interdisciplinary approach. This work is an example for the possible synergetic effect of interdisciplinary research. In the field of oceanography the coastal upwelling phenomenon is analysed in experimental studies with a numerical model in order to develop a parametric prediction model. Artificial neural networks seem to be a suitable parametric model. However, in the field of computer science traditional artificial neural techniques showed limitations in the analysis and prediction of time series obtained from natural phenomena, particularly with nonlinear and nonstationary time series. Motivated by this limitations a new approach to time series analysis and prediction is presented in this work, the mixture of nonparametric segmented experts (MONSE). The MONSE approach is exploiting the synergetic effect of a combined nonparametric and parametric analysis. It is supposed to be applied to explorative time series analysis and prediction in various fields, i.e. in a context where hardly any kowledge about the time series of concern is available.
A Course in Time Series Analysis
Author: Daniel Peña
Publisher: John Wiley & Sons
ISBN: 1118031229
Category : Mathematics
Languages : en
Pages : 494
Book Description
New statistical methods and future directions of research in time series A Course in Time Series Analysis demonstrates how to build time series models for univariate and multivariate time series data. It brings together material previously available only in the professional literature and presents a unified view of the most advanced procedures available for time series model building. The authors begin with basic concepts in univariate time series, providing an up-to-date presentation of ARIMA models, including the Kalman filter, outlier analysis, automatic methods for building ARIMA models, and signal extraction. They then move on to advanced topics, focusing on heteroscedastic models, nonlinear time series models, Bayesian time series analysis, nonparametric time series analysis, and neural networks. Multivariate time series coverage includes presentations on vector ARMA models, cointegration, and multivariate linear systems. Special features include: Contributions from eleven of the worldâ??s leading figures in time series Shared balance between theory and application Exercise series sets Many real data examples Consistent style and clear, common notation in all contributions 60 helpful graphs and tables Requiring no previous knowledge of the subject, A Course in Time Series Analysis is an important reference and a highly useful resource for researchers and practitioners in statistics, economics, business, engineering, and environmental analysis. An Instructor's Manual presenting detailed solutions to all the problems in he book is available upon request from the Wiley editorial department.
Publisher: John Wiley & Sons
ISBN: 1118031229
Category : Mathematics
Languages : en
Pages : 494
Book Description
New statistical methods and future directions of research in time series A Course in Time Series Analysis demonstrates how to build time series models for univariate and multivariate time series data. It brings together material previously available only in the professional literature and presents a unified view of the most advanced procedures available for time series model building. The authors begin with basic concepts in univariate time series, providing an up-to-date presentation of ARIMA models, including the Kalman filter, outlier analysis, automatic methods for building ARIMA models, and signal extraction. They then move on to advanced topics, focusing on heteroscedastic models, nonlinear time series models, Bayesian time series analysis, nonparametric time series analysis, and neural networks. Multivariate time series coverage includes presentations on vector ARMA models, cointegration, and multivariate linear systems. Special features include: Contributions from eleven of the worldâ??s leading figures in time series Shared balance between theory and application Exercise series sets Many real data examples Consistent style and clear, common notation in all contributions 60 helpful graphs and tables Requiring no previous knowledge of the subject, A Course in Time Series Analysis is an important reference and a highly useful resource for researchers and practitioners in statistics, economics, business, engineering, and environmental analysis. An Instructor's Manual presenting detailed solutions to all the problems in he book is available upon request from the Wiley editorial department.
Practical Time Series Analysis
Author: Aileen Nielsen
Publisher: O'Reilly Media
ISBN: 1492041629
Category : Computers
Languages : en
Pages : 500
Book Description
Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase. Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challengesin time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly. You’ll get the guidance you need to confidently: Find and wrangle time series data Undertake exploratory time series data analysis Store temporal data Simulate time series data Generate and select features for a time series Measure error Forecast and classify time series with machine or deep learning Evaluate accuracy and performance
Publisher: O'Reilly Media
ISBN: 1492041629
Category : Computers
Languages : en
Pages : 500
Book Description
Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase. Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challengesin time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly. You’ll get the guidance you need to confidently: Find and wrangle time series data Undertake exploratory time series data analysis Store temporal data Simulate time series data Generate and select features for a time series Measure error Forecast and classify time series with machine or deep learning Evaluate accuracy and performance
New Directions in Time Series Analysis
Author: David Brillinger
Publisher: Springer Science & Business Media
ISBN: 1461392969
Category : Mathematics
Languages : en
Pages : 391
Book Description
This IMA Volume in Mathematics and its Applications NEW DIRECTIONS IN TIME SERIES ANALYSIS, PART II is based on the proceedings of the IMA summer program "New Directions in Time Series Analysis. " We are grateful to David Brillinger, Peter Caines, John Geweke, Emanuel Parzen, Murray Rosenblatt, and Murad Taqqu for organizing the program and we hope that the remarkable excitement and enthusiasm of the participants in this interdisciplinary effort are communicated to the reader. A vner Friedman Willard Miller, Jr. PREFACE Time Series Analysis is truly an interdisciplinary field because development of its theory and methods requires interaction between the diverse disciplines in which it is applied. To harness its great potential, strong interaction must be encouraged among the diverse community of statisticians and other scientists whose research involves the analysis of time series data. This was the goal of the IMA Workshop on "New Directions in Time Series Analysis. " The workshop was held July 2-July 27, 1990 and was organized by a committee consisting of Emanuel Parzen (chair), David Brillinger, Murray Rosenblatt, Murad S. Taqqu, John Geweke, and Peter Caines. Constant guidance and encouragement was provided by Avner Friedman, Director of the IMA, and his very helpful and efficient staff. The workshops were organized by weeks. It may be of interest to record the themes that were announced in the IMA newsletter describing the workshop: l.
Publisher: Springer Science & Business Media
ISBN: 1461392969
Category : Mathematics
Languages : en
Pages : 391
Book Description
This IMA Volume in Mathematics and its Applications NEW DIRECTIONS IN TIME SERIES ANALYSIS, PART II is based on the proceedings of the IMA summer program "New Directions in Time Series Analysis. " We are grateful to David Brillinger, Peter Caines, John Geweke, Emanuel Parzen, Murray Rosenblatt, and Murad Taqqu for organizing the program and we hope that the remarkable excitement and enthusiasm of the participants in this interdisciplinary effort are communicated to the reader. A vner Friedman Willard Miller, Jr. PREFACE Time Series Analysis is truly an interdisciplinary field because development of its theory and methods requires interaction between the diverse disciplines in which it is applied. To harness its great potential, strong interaction must be encouraged among the diverse community of statisticians and other scientists whose research involves the analysis of time series data. This was the goal of the IMA Workshop on "New Directions in Time Series Analysis. " The workshop was held July 2-July 27, 1990 and was organized by a committee consisting of Emanuel Parzen (chair), David Brillinger, Murray Rosenblatt, Murad S. Taqqu, John Geweke, and Peter Caines. Constant guidance and encouragement was provided by Avner Friedman, Director of the IMA, and his very helpful and efficient staff. The workshops were organized by weeks. It may be of interest to record the themes that were announced in the IMA newsletter describing the workshop: l.
Data Analytics in System Engineering
Author: Radek Silhavy
Publisher: Springer Nature
ISBN: 3031535529
Category :
Languages : en
Pages : 473
Book Description
Publisher: Springer Nature
ISBN: 3031535529
Category :
Languages : en
Pages : 473
Book Description
Recursive Estimation and Time-Series Analysis
Author: Peter C. Young
Publisher: Springer Science & Business Media
ISBN: 364282336X
Category : Technology & Engineering
Languages : en
Pages : 315
Book Description
This book has grown out of a set of lecture notes prepared originally for a NATO Summer School on "The Theory and Practice of Systems ModelLing and Identification" held between the 17th and 28th July, 1972 at the Ecole Nationale Superieure de L'Aeronautique et de L'Espace. Since this time I have given similar lecture courses in the Control Division of the Engineering Department, University of Cambridge; Department of Mechanical Engineering, University of Western Australia; the University of Ghent, Belgium (during the time I held the IBM Visiting Chair in Simulation for the month of January, 1980), the Australian National University, and the Agricultural University, Wageningen, the Netherlands. As a result, I am grateful to all the reci pients of these lecture courses for their help in refining the book to its present form; it is still far from perfect but I hope that it will help the student to become acquainted with the interesting and practically useful concept of recursive estimation. Furthermore, I hope it will stimulate the reader to further study the theoretical aspects of the subject, which are not dealt with in detail in the present text. The book is primarily intended to provide an introductory set of lecture notes on the subject of recursive estimation to undergraduate/Masters students. However, the book can also be considered as a "theoretical background" handbook for use with the CAPTAIN Computer Package.
Publisher: Springer Science & Business Media
ISBN: 364282336X
Category : Technology & Engineering
Languages : en
Pages : 315
Book Description
This book has grown out of a set of lecture notes prepared originally for a NATO Summer School on "The Theory and Practice of Systems ModelLing and Identification" held between the 17th and 28th July, 1972 at the Ecole Nationale Superieure de L'Aeronautique et de L'Espace. Since this time I have given similar lecture courses in the Control Division of the Engineering Department, University of Cambridge; Department of Mechanical Engineering, University of Western Australia; the University of Ghent, Belgium (during the time I held the IBM Visiting Chair in Simulation for the month of January, 1980), the Australian National University, and the Agricultural University, Wageningen, the Netherlands. As a result, I am grateful to all the reci pients of these lecture courses for their help in refining the book to its present form; it is still far from perfect but I hope that it will help the student to become acquainted with the interesting and practically useful concept of recursive estimation. Furthermore, I hope it will stimulate the reader to further study the theoretical aspects of the subject, which are not dealt with in detail in the present text. The book is primarily intended to provide an introductory set of lecture notes on the subject of recursive estimation to undergraduate/Masters students. However, the book can also be considered as a "theoretical background" handbook for use with the CAPTAIN Computer Package.
Elements of Nonlinear Time Series Analysis and Forecasting
Author: Jan G. De Gooijer
Publisher: Springer
ISBN: 3319432524
Category : Mathematics
Languages : en
Pages : 626
Book Description
This book provides an overview of the current state-of-the-art of nonlinear time series analysis, richly illustrated with examples, pseudocode algorithms and real-world applications. Avoiding a “theorem-proof” format, it shows concrete applications on a variety of empirical time series. The book can be used in graduate courses in nonlinear time series and at the same time also includes interesting material for more advanced readers. Though it is largely self-contained, readers require an understanding of basic linear time series concepts, Markov chains and Monte Carlo simulation methods. The book covers time-domain and frequency-domain methods for the analysis of both univariate and multivariate (vector) time series. It makes a clear distinction between parametric models on the one hand, and semi- and nonparametric models/methods on the other. This offers the reader the option of concentrating exclusively on one of these nonlinear time series analysis methods. To make the book as user friendly as possible, major supporting concepts and specialized tables are appended at the end of every chapter. In addition, each chapter concludes with a set of key terms and concepts, as well as a summary of the main findings. Lastly, the book offers numerous theoretical and empirical exercises, with answers provided by the author in an extensive solutions manual.
Publisher: Springer
ISBN: 3319432524
Category : Mathematics
Languages : en
Pages : 626
Book Description
This book provides an overview of the current state-of-the-art of nonlinear time series analysis, richly illustrated with examples, pseudocode algorithms and real-world applications. Avoiding a “theorem-proof” format, it shows concrete applications on a variety of empirical time series. The book can be used in graduate courses in nonlinear time series and at the same time also includes interesting material for more advanced readers. Though it is largely self-contained, readers require an understanding of basic linear time series concepts, Markov chains and Monte Carlo simulation methods. The book covers time-domain and frequency-domain methods for the analysis of both univariate and multivariate (vector) time series. It makes a clear distinction between parametric models on the one hand, and semi- and nonparametric models/methods on the other. This offers the reader the option of concentrating exclusively on one of these nonlinear time series analysis methods. To make the book as user friendly as possible, major supporting concepts and specialized tables are appended at the end of every chapter. In addition, each chapter concludes with a set of key terms and concepts, as well as a summary of the main findings. Lastly, the book offers numerous theoretical and empirical exercises, with answers provided by the author in an extensive solutions manual.
Applied Time Series Analysis
Author: Terence C. Mills
Publisher: Academic Press
ISBN: 0128131179
Category : Business & Economics
Languages : en
Pages : 354
Book Description
Written for those who need an introduction, Applied Time Series Analysis reviews applications of the popular econometric analysis technique across disciplines. Carefully balancing accessibility with rigor, it spans economics, finance, economic history, climatology, meteorology, and public health. Terence Mills provides a practical, step-by-step approach that emphasizes core theories and results without becoming bogged down by excessive technical details. Including univariate and multivariate techniques, Applied Time Series Analysis provides data sets and program files that support a broad range of multidisciplinary applications, distinguishing this book from others.
Publisher: Academic Press
ISBN: 0128131179
Category : Business & Economics
Languages : en
Pages : 354
Book Description
Written for those who need an introduction, Applied Time Series Analysis reviews applications of the popular econometric analysis technique across disciplines. Carefully balancing accessibility with rigor, it spans economics, finance, economic history, climatology, meteorology, and public health. Terence Mills provides a practical, step-by-step approach that emphasizes core theories and results without becoming bogged down by excessive technical details. Including univariate and multivariate techniques, Applied Time Series Analysis provides data sets and program files that support a broad range of multidisciplinary applications, distinguishing this book from others.
Applied Nonlinear Time Series Analysis
Author: Michael Small
Publisher: World Scientific
ISBN: 981256117X
Category : Mathematics
Languages : en
Pages : 262
Book Description
A collection of photographs focusing on the fading traditions, heritage and culture in County Cork Ireland.
Publisher: World Scientific
ISBN: 981256117X
Category : Mathematics
Languages : en
Pages : 262
Book Description
A collection of photographs focusing on the fading traditions, heritage and culture in County Cork Ireland.