Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 60
Book Description
Microgravity Combustion Science: 1995 Program Update
Spectroscopy and Optical Diagnostics for Gases
Author: Ronald K. Hanson
Publisher: Springer
ISBN: 3319232525
Category : Technology & Engineering
Languages : en
Pages : 290
Book Description
This text provides an introduction to the science that governs the interaction of light and matter (in the gas phase). It provides readers with the basic knowledge to exploit the light-matter interaction to develop quantitative tools for gas analysis (i.e. optical diagnostics) and understand and interpret the results of spectroscopic measurements. The authors pair the basics of gas‐phase spectroscopy with coverage of key optical diagnostic techniques utilized by practicing engineers and scientists to measure fundamental flow‐field properties. The text is organized to cover three sub‐topics of gas‐phase spectroscopy: (1) spectral line positions, (2) spectral line strengths, and (3) spectral lineshapes by way of absorption, emission, and scattering interactions. The latter part of the book describes optical measurement techniques and equipment. Key subspecialties include laser induced fluorescence, tunable laser absorption spectroscopy, and wavelength modulation spectroscopy. It is ideal for students and practitioners across a range of applied sciences including mechanical, aerospace, chemical, and materials engineering.
Publisher: Springer
ISBN: 3319232525
Category : Technology & Engineering
Languages : en
Pages : 290
Book Description
This text provides an introduction to the science that governs the interaction of light and matter (in the gas phase). It provides readers with the basic knowledge to exploit the light-matter interaction to develop quantitative tools for gas analysis (i.e. optical diagnostics) and understand and interpret the results of spectroscopic measurements. The authors pair the basics of gas‐phase spectroscopy with coverage of key optical diagnostic techniques utilized by practicing engineers and scientists to measure fundamental flow‐field properties. The text is organized to cover three sub‐topics of gas‐phase spectroscopy: (1) spectral line positions, (2) spectral line strengths, and (3) spectral lineshapes by way of absorption, emission, and scattering interactions. The latter part of the book describes optical measurement techniques and equipment. Key subspecialties include laser induced fluorescence, tunable laser absorption spectroscopy, and wavelength modulation spectroscopy. It is ideal for students and practitioners across a range of applied sciences including mechanical, aerospace, chemical, and materials engineering.
International Aerospace Abstracts
Combustion of Liquid Fuel Sprays
Author: Alan Williams
Publisher: Butterworth-Heinemann
ISBN: 1483101584
Category : Technology & Engineering
Languages : en
Pages : 300
Book Description
Combustion of Liquid Fuel Sprays outlines the fundamentals of the combustion of sprays in a unified way which may be applied to any technological application. The book begins with a discussion of the general nature of spray combustion, the sources of liquid fuels used in spray combustion, biomass sources of liquid fuels, and the nature and properties of fuel oils. Subsequent chapters focus on the properties of sprays, the atomization of liquid fuels, and the theoretical modeling of the behavior of a spray flame in a combustion chamber. The nature and control of pollutants from spray combustion, the formation of deposits in oil-fired systems, and the combustion of sprays in furnaces and engines are elucidated as well. The text is intended for students undertaking courses or research in fuel, combustion, and energy studies.
Publisher: Butterworth-Heinemann
ISBN: 1483101584
Category : Technology & Engineering
Languages : en
Pages : 300
Book Description
Combustion of Liquid Fuel Sprays outlines the fundamentals of the combustion of sprays in a unified way which may be applied to any technological application. The book begins with a discussion of the general nature of spray combustion, the sources of liquid fuels used in spray combustion, biomass sources of liquid fuels, and the nature and properties of fuel oils. Subsequent chapters focus on the properties of sprays, the atomization of liquid fuels, and the theoretical modeling of the behavior of a spray flame in a combustion chamber. The nature and control of pollutants from spray combustion, the formation of deposits in oil-fired systems, and the combustion of sprays in furnaces and engines are elucidated as well. The text is intended for students undertaking courses or research in fuel, combustion, and energy studies.
Progress in Ultrafast Intense Laser Science XIV
Author: Kaoru Yamanouchi
Publisher: Springer
ISBN: 303003786X
Category : Science
Languages : en
Pages : 304
Book Description
This 14th volume in the PUILS series presents up-to-date reviews of advances in Ultrafast Intense Laser Science, an interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the rapid developments in ultrafast laser technologies. Each chapter begins with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and appeal of the respective subject matter; this is followed by reports on cutting-edge discoveries. This volume covers a broad range of topics from this interdisciplinary field, e.g. atoms and molecules interacting in intense laser fields, laser-induced filamentation, high-order harmonics generation, and high-intensity lasers and their applications.
Publisher: Springer
ISBN: 303003786X
Category : Science
Languages : en
Pages : 304
Book Description
This 14th volume in the PUILS series presents up-to-date reviews of advances in Ultrafast Intense Laser Science, an interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the rapid developments in ultrafast laser technologies. Each chapter begins with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and appeal of the respective subject matter; this is followed by reports on cutting-edge discoveries. This volume covers a broad range of topics from this interdisciplinary field, e.g. atoms and molecules interacting in intense laser fields, laser-induced filamentation, high-order harmonics generation, and high-intensity lasers and their applications.
Scattering, Absorption, and Emission of Light by Small Particles
Author: Michael I. Mishchenko
Publisher: Cambridge University Press
ISBN: 9780521782524
Category : Science
Languages : en
Pages : 560
Book Description
A thorough and up-to-date treatment of electromagnetic scattering by small particles.
Publisher: Cambridge University Press
ISBN: 9780521782524
Category : Science
Languages : en
Pages : 560
Book Description
A thorough and up-to-date treatment of electromagnetic scattering by small particles.
Springer Handbook of Experimental Fluid Mechanics
Author: Cameron Tropea
Publisher: Springer Science & Business Media
ISBN: 3540251413
Category : Science
Languages : en
Pages : 1570
Book Description
Accompanying DVD-ROM contains ... "all chapters of the Springer Handbook."--Page 3 of cover.
Publisher: Springer Science & Business Media
ISBN: 3540251413
Category : Science
Languages : en
Pages : 1570
Book Description
Accompanying DVD-ROM contains ... "all chapters of the Springer Handbook."--Page 3 of cover.
Soot Formation in Combustion
Author: Henning Bockhorn
Publisher: Springer Science & Business Media
ISBN: 3642851673
Category : Science
Languages : en
Pages : 595
Book Description
Soot Formation in Combustion represents an up-to-date overview. The contributions trace back to the 1991 Heidelberg symposium entitled "Mechanism and Models of Soot Formation" and have all been reedited by Prof. Bockhorn in close contact with the original authors. The book gives an easy introduction to the field for newcomers, and provides detailed treatments for the specialists. The following list of contents illustrates the topics under review:
Publisher: Springer Science & Business Media
ISBN: 3642851673
Category : Science
Languages : en
Pages : 595
Book Description
Soot Formation in Combustion represents an up-to-date overview. The contributions trace back to the 1991 Heidelberg symposium entitled "Mechanism and Models of Soot Formation" and have all been reedited by Prof. Bockhorn in close contact with the original authors. The book gives an easy introduction to the field for newcomers, and provides detailed treatments for the specialists. The following list of contents illustrates the topics under review:
Combustion Generated Fine Carbonaceous Particles
Author: Andrea D'Anna
Publisher: KIT Scientific Publishing
ISBN: 3866444419
Category : Technology & Engineering
Languages : en
Pages : 754
Book Description
Soot is of importance for its contribution to atmospheric particles with their adverse health impacts and for its contributions to heat transfer in furnaces and combustors, to luminosity from candles, and to smoke that hinders escape from buildings during fires and that impacts global warming or cooling. The different chapters of the book adress comprehensively the different aspects from fundamental approaches to applications in technical combustion devices.
Publisher: KIT Scientific Publishing
ISBN: 3866444419
Category : Technology & Engineering
Languages : en
Pages : 754
Book Description
Soot is of importance for its contribution to atmospheric particles with their adverse health impacts and for its contributions to heat transfer in furnaces and combustors, to luminosity from candles, and to smoke that hinders escape from buildings during fires and that impacts global warming or cooling. The different chapters of the book adress comprehensively the different aspects from fundamental approaches to applications in technical combustion devices.
Laser-Induced Dynamic Gratings
Author: Hans Joachim Eichler
Publisher: Springer
ISBN: 3540396624
Category : Science
Languages : en
Pages : 270
Book Description
The invention ofthe laser 25years ago resulted in powerfullight sources which led to the observation of unexpected and striking phenomena. New fields of science such as holography and nonlinear optics developed constituting the basis of this volume. The classical principle of linear superposition of light wavesdoes not hold anymore. Two laser beams crossing in a suitable material may produce a set of new beams with different directions and frequencies. The interaction of light waves can be understood by considering the optical grating structures which develop in the overlap region. The optical properties of matter become spatially modulated in the interference region of two light waves. Permanent holographic gratings have been produced in this way by photographic processes for many years. In contrast, dynamic or transient gratings disappear after the inducing light source, usually a laser, has been switched off. The grating amplitude is controlled by the light intensity. Dynamic gratings have been induced in a large number ofsolids, liquids, and gases, and are detected by diffraction, 'forced light scattering' of a third probing beam, or by self-diffraction of the light waves inducing the grating. The combined interference and diffraction effect corresponds to four-wave mixing (FWM) in the language of nonlinear optics. The process is called degenerate ifthe frequenciesofthe three incident wavesand the scattered wave are equal. Degenerate four-wave mixing (DFWM) is a simple method to achieve phase conjugation, i.e. to generate a wave which propagates time reversed with respect to an incident wave.
Publisher: Springer
ISBN: 3540396624
Category : Science
Languages : en
Pages : 270
Book Description
The invention ofthe laser 25years ago resulted in powerfullight sources which led to the observation of unexpected and striking phenomena. New fields of science such as holography and nonlinear optics developed constituting the basis of this volume. The classical principle of linear superposition of light wavesdoes not hold anymore. Two laser beams crossing in a suitable material may produce a set of new beams with different directions and frequencies. The interaction of light waves can be understood by considering the optical grating structures which develop in the overlap region. The optical properties of matter become spatially modulated in the interference region of two light waves. Permanent holographic gratings have been produced in this way by photographic processes for many years. In contrast, dynamic or transient gratings disappear after the inducing light source, usually a laser, has been switched off. The grating amplitude is controlled by the light intensity. Dynamic gratings have been induced in a large number ofsolids, liquids, and gases, and are detected by diffraction, 'forced light scattering' of a third probing beam, or by self-diffraction of the light waves inducing the grating. The combined interference and diffraction effect corresponds to four-wave mixing (FWM) in the language of nonlinear optics. The process is called degenerate ifthe frequenciesofthe three incident wavesand the scattered wave are equal. Degenerate four-wave mixing (DFWM) is a simple method to achieve phase conjugation, i.e. to generate a wave which propagates time reversed with respect to an incident wave.