Author: George Wentworth
Publisher:
ISBN:
Category : Arithmetic
Languages : en
Pages : 288
Book Description
The New Math
Author: Christopher James Phillips
Publisher: University of Chicago Press
ISBN: 022618496X
Category : Education
Languages : en
Pages : 242
Book Description
An era of sweeping cultural change in America, the postwar years saw the rise of beatniks and hippies, the birth of feminism, and the release of the first video game. This book examines the rise and fall of the new math as a marker of the period's political and social ferment.
Publisher: University of Chicago Press
ISBN: 022618496X
Category : Education
Languages : en
Pages : 242
Book Description
An era of sweeping cultural change in America, the postwar years saw the rise of beatniks and hippies, the birth of feminism, and the release of the first video game. This book examines the rise and fall of the new math as a marker of the period's political and social ferment.
Complete Arithmetic
Author: George Wentworth
Publisher:
ISBN:
Category : Arithmetic
Languages : en
Pages : 288
Book Description
Publisher:
ISBN:
Category : Arithmetic
Languages : en
Pages : 288
Book Description
How Math Works
Author: G. Arnell Williams
Publisher: Rowman & Littlefield Publishers
ISBN: 1442218762
Category : Education
Languages : en
Pages : 347
Book Description
We hear all the time how American children are falling behind their global peers in various basic subjects, but particularly in math. Is it our fear of math that constrains us? Or our inability to understand math’s place in relation to our everyday lives? How can we help our children better understand the basics of arithmetic if we’re not really sure we understand them ourselves? Here, G. Arnell Williams helps parents and teachers explore the world of math that their elementary school children are learning. Taking readers on a tour of the history of arithmetic, and its growth into the subject we know it to be today, Williams explores the beauty and relevance of mathematics by focusing on the great conceptual depth and genius already inherent in the elementary mathematics familiar to us all, and by connecting it to other well-known areas such as language and the conceptual aspects of everyday life. The result is a book that will help you to better explain mathematics to your children. For those already well versed in these areas, the book offers a tour of the great conceptual and historical facts and assumptions that most simply take for granted. If you are someone who has always struggled with mathematics either because you couldn’t do it or because you never really understood why the rules are the way they are, if you were irritated with the way it was taught to you with the emphasis being only on learning the rules and “recipes” by rote as opposed to obtaining a good conceptual understanding, then How Math Works is for you!
Publisher: Rowman & Littlefield Publishers
ISBN: 1442218762
Category : Education
Languages : en
Pages : 347
Book Description
We hear all the time how American children are falling behind their global peers in various basic subjects, but particularly in math. Is it our fear of math that constrains us? Or our inability to understand math’s place in relation to our everyday lives? How can we help our children better understand the basics of arithmetic if we’re not really sure we understand them ourselves? Here, G. Arnell Williams helps parents and teachers explore the world of math that their elementary school children are learning. Taking readers on a tour of the history of arithmetic, and its growth into the subject we know it to be today, Williams explores the beauty and relevance of mathematics by focusing on the great conceptual depth and genius already inherent in the elementary mathematics familiar to us all, and by connecting it to other well-known areas such as language and the conceptual aspects of everyday life. The result is a book that will help you to better explain mathematics to your children. For those already well versed in these areas, the book offers a tour of the great conceptual and historical facts and assumptions that most simply take for granted. If you are someone who has always struggled with mathematics either because you couldn’t do it or because you never really understood why the rules are the way they are, if you were irritated with the way it was taught to you with the emphasis being only on learning the rules and “recipes” by rote as opposed to obtaining a good conceptual understanding, then How Math Works is for you!
Complete Arithmetic
Author: Andrew H. Baker
Publisher:
ISBN:
Category : Arithmetic
Languages : en
Pages : 204
Book Description
Publisher:
ISBN:
Category : Arithmetic
Languages : en
Pages : 204
Book Description
Arithmetic
Author: Paul Lockhart
Publisher: Belknap Press
ISBN: 067423751X
Category : Mathematics
Languages : en
Pages : 232
Book Description
“Inspiring and informative...deserves to be widely read.” —Wall Street Journal “This fun book offers a philosophical take on number systems and revels in the beauty of math.” —Science News Because we have ten fingers, grouping by ten seems natural, but twelve would be better for divisibility, and eight is well suited to repeated halving. Grouping by two, as in binary code, has turned out to have its own remarkable advantages. Paul Lockhart presents arithmetic not as rote manipulation of numbers—a practical if mundane branch of knowledge best suited for filling out tax forms—but as a fascinating, sometimes surprising intellectual craft that arises from our desire to add, divide, and multiply important things. Passionate and entertaining, Arithmetic invites us to experience the beauty of mathematics through the eyes of a beguiling teacher. “A nuanced understanding of working with numbers, gently connecting procedures that we once learned by rote with intuitions long since muddled by education...Lockhart presents arithmetic as a pleasurable pastime, and describes it as a craft like knitting.” —Jonathon Keats, New Scientist “What are numbers, how did they arise, why did our ancestors invent them, and how did they represent them? They are, after all, one of humankind’s most brilliant inventions, arguably having greater impact on our lives than the wheel. Lockhart recounts their fascinating story...A wonderful book.” —Keith Devlin, author of Finding Fibonacci
Publisher: Belknap Press
ISBN: 067423751X
Category : Mathematics
Languages : en
Pages : 232
Book Description
“Inspiring and informative...deserves to be widely read.” —Wall Street Journal “This fun book offers a philosophical take on number systems and revels in the beauty of math.” —Science News Because we have ten fingers, grouping by ten seems natural, but twelve would be better for divisibility, and eight is well suited to repeated halving. Grouping by two, as in binary code, has turned out to have its own remarkable advantages. Paul Lockhart presents arithmetic not as rote manipulation of numbers—a practical if mundane branch of knowledge best suited for filling out tax forms—but as a fascinating, sometimes surprising intellectual craft that arises from our desire to add, divide, and multiply important things. Passionate and entertaining, Arithmetic invites us to experience the beauty of mathematics through the eyes of a beguiling teacher. “A nuanced understanding of working with numbers, gently connecting procedures that we once learned by rote with intuitions long since muddled by education...Lockhart presents arithmetic as a pleasurable pastime, and describes it as a craft like knitting.” —Jonathon Keats, New Scientist “What are numbers, how did they arise, why did our ancestors invent them, and how did they represent them? They are, after all, one of humankind’s most brilliant inventions, arguably having greater impact on our lives than the wheel. Lockhart recounts their fascinating story...A wonderful book.” —Keith Devlin, author of Finding Fibonacci
Arithmetic and Algebra
A Course in Arithmetic
Author: J-P. Serre
Publisher: Springer Science & Business Media
ISBN: 1468498843
Category : Mathematics
Languages : en
Pages : 126
Book Description
This book is divided into two parts. The first one is purely algebraic. Its objective is the classification of quadratic forms over the field of rational numbers (Hasse-Minkowski theorem). It is achieved in Chapter IV. The first three chapters contain some preliminaries: quadratic reciprocity law, p-adic fields, Hilbert symbols. Chapter V applies the preceding results to integral quadratic forms of discriminant ± I. These forms occur in various questions: modular functions, differential topology, finite groups. The second part (Chapters VI and VII) uses "analytic" methods (holomor phic functions). Chapter VI gives the proof of the "theorem on arithmetic progressions" due to Dirichlet; this theorem is used at a critical point in the first part (Chapter Ill, no. 2.2). Chapter VII deals with modular forms, and in particular, with theta functions. Some of the quadratic forms of Chapter V reappear here. The two parts correspond to lectures given in 1962 and 1964 to second year students at the Ecole Normale Superieure. A redaction of these lectures in the form of duplicated notes, was made by J.-J. Sansuc (Chapters I-IV) and J.-P. Ramis and G. Ruget (Chapters VI-VII). They were very useful to me; I extend here my gratitude to their authors.
Publisher: Springer Science & Business Media
ISBN: 1468498843
Category : Mathematics
Languages : en
Pages : 126
Book Description
This book is divided into two parts. The first one is purely algebraic. Its objective is the classification of quadratic forms over the field of rational numbers (Hasse-Minkowski theorem). It is achieved in Chapter IV. The first three chapters contain some preliminaries: quadratic reciprocity law, p-adic fields, Hilbert symbols. Chapter V applies the preceding results to integral quadratic forms of discriminant ± I. These forms occur in various questions: modular functions, differential topology, finite groups. The second part (Chapters VI and VII) uses "analytic" methods (holomor phic functions). Chapter VI gives the proof of the "theorem on arithmetic progressions" due to Dirichlet; this theorem is used at a critical point in the first part (Chapter Ill, no. 2.2). Chapter VII deals with modular forms, and in particular, with theta functions. Some of the quadratic forms of Chapter V reappear here. The two parts correspond to lectures given in 1962 and 1964 to second year students at the Ecole Normale Superieure. A redaction of these lectures in the form of duplicated notes, was made by J.-J. Sansuc (Chapters I-IV) and J.-P. Ramis and G. Ruget (Chapters VI-VII). They were very useful to me; I extend here my gratitude to their authors.
Ray's New Practical Arithmetic
Author: Joseph Ray
Publisher:
ISBN:
Category : Arithmetic
Languages : en
Pages : 402
Book Description
Publisher:
ISBN:
Category : Arithmetic
Languages : en
Pages : 402
Book Description
Digital Arithmetic
Author: Milos D. Ercegovac
Publisher: Elsevier
ISBN: 1558607986
Category : Computers
Languages : en
Pages : 736
Book Description
The authoritative reference on the theory and design practice of computer arithmetic.
Publisher: Elsevier
ISBN: 1558607986
Category : Computers
Languages : en
Pages : 736
Book Description
The authoritative reference on the theory and design practice of computer arithmetic.
Field Arithmetic
Author: Michael D. Fried
Publisher: Springer Science & Business Media
ISBN: 9783540228110
Category : Computers
Languages : en
Pages : 812
Book Description
Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements. Progress from the first edition starts by characterizing the finite-field like P(seudo)A(lgebraically)C(losed) fields. We once believed PAC fields were rare. Now we know they include valuable Galois extensions of the rationals that present its absolute Galois group through known groups. PAC fields have projective absolute Galois group. Those that are Hilbertian are characterized by this group being pro-free. These last decade results are tools for studying fields by their relation to those with projective absolute group. There are still mysterious problems to guide a new generation: Is the solvable closure of the rationals PAC; and do projective Hilbertian fields have pro-free absolute Galois group (includes Shafarevich's conjecture)?
Publisher: Springer Science & Business Media
ISBN: 9783540228110
Category : Computers
Languages : en
Pages : 812
Book Description
Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements. Progress from the first edition starts by characterizing the finite-field like P(seudo)A(lgebraically)C(losed) fields. We once believed PAC fields were rare. Now we know they include valuable Galois extensions of the rationals that present its absolute Galois group through known groups. PAC fields have projective absolute Galois group. Those that are Hilbertian are characterized by this group being pro-free. These last decade results are tools for studying fields by their relation to those with projective absolute group. There are still mysterious problems to guide a new generation: Is the solvable closure of the rationals PAC; and do projective Hilbertian fields have pro-free absolute Galois group (includes Shafarevich's conjecture)?