Author: H. P. F. Swinnerton-Dyer
Publisher: Cambridge University Press
ISBN: 9780521004237
Category : Mathematics
Languages : en
Pages : 164
Book Description
Broad graduate-level account of Algebraic Number Theory, first published in 2001, including exercises, by a world-renowned author.
A Brief Guide to Algebraic Number Theory
Author: H. P. F. Swinnerton-Dyer
Publisher: Cambridge University Press
ISBN: 9780521004237
Category : Mathematics
Languages : en
Pages : 164
Book Description
Broad graduate-level account of Algebraic Number Theory, first published in 2001, including exercises, by a world-renowned author.
Publisher: Cambridge University Press
ISBN: 9780521004237
Category : Mathematics
Languages : en
Pages : 164
Book Description
Broad graduate-level account of Algebraic Number Theory, first published in 2001, including exercises, by a world-renowned author.
A Conversational Introduction to Algebraic Number Theory
Author: Paul Pollack
Publisher: American Mathematical Soc.
ISBN: 1470436531
Category : Mathematics
Languages : en
Pages : 329
Book Description
Gauss famously referred to mathematics as the “queen of the sciences” and to number theory as the “queen of mathematics”. This book is an introduction to algebraic number theory, meaning the study of arithmetic in finite extensions of the rational number field Q . Originating in the work of Gauss, the foundations of modern algebraic number theory are due to Dirichlet, Dedekind, Kronecker, Kummer, and others. This book lays out basic results, including the three “fundamental theorems”: unique factorization of ideals, finiteness of the class number, and Dirichlet's unit theorem. While these theorems are by now quite classical, both the text and the exercises allude frequently to more recent developments. In addition to traversing the main highways, the book reveals some remarkable vistas by exploring scenic side roads. Several topics appear that are not present in the usual introductory texts. One example is the inclusion of an extensive discussion of the theory of elasticity, which provides a precise way of measuring the failure of unique factorization. The book is based on the author's notes from a course delivered at the University of Georgia; pains have been taken to preserve the conversational style of the original lectures.
Publisher: American Mathematical Soc.
ISBN: 1470436531
Category : Mathematics
Languages : en
Pages : 329
Book Description
Gauss famously referred to mathematics as the “queen of the sciences” and to number theory as the “queen of mathematics”. This book is an introduction to algebraic number theory, meaning the study of arithmetic in finite extensions of the rational number field Q . Originating in the work of Gauss, the foundations of modern algebraic number theory are due to Dirichlet, Dedekind, Kronecker, Kummer, and others. This book lays out basic results, including the three “fundamental theorems”: unique factorization of ideals, finiteness of the class number, and Dirichlet's unit theorem. While these theorems are by now quite classical, both the text and the exercises allude frequently to more recent developments. In addition to traversing the main highways, the book reveals some remarkable vistas by exploring scenic side roads. Several topics appear that are not present in the usual introductory texts. One example is the inclusion of an extensive discussion of the theory of elasticity, which provides a precise way of measuring the failure of unique factorization. The book is based on the author's notes from a course delivered at the University of Georgia; pains have been taken to preserve the conversational style of the original lectures.
The Theory of Algebraic Numbers: Second Edition
Author: Harry Pollard
Publisher: American Mathematical Soc.
ISBN: 1614440093
Category : Mathematics
Languages : en
Pages : 175
Book Description
This monograph makes available, in English, the elementary parts of classical algebraic number theory. This second edition follows closely the plan and style of the first edition. The principal changes are the correction of misprints, the expansion or simplification of some arguments, and the omission of the final chapter on units in order to make way for the introduction of some two hundred problems.
Publisher: American Mathematical Soc.
ISBN: 1614440093
Category : Mathematics
Languages : en
Pages : 175
Book Description
This monograph makes available, in English, the elementary parts of classical algebraic number theory. This second edition follows closely the plan and style of the first edition. The principal changes are the correction of misprints, the expansion or simplification of some arguments, and the omission of the final chapter on units in order to make way for the introduction of some two hundred problems.
Algebraic Number Theory
Author: Edwin Weiss
Publisher: Courier Corporation
ISBN: 048615436X
Category : Mathematics
Languages : en
Pages : 308
Book Description
Ideal either for classroom use or as exercises for mathematically minded individuals, this text introduces elementary valuation theory, extension of valuations, local and ordinary arithmetic fields, and global, quadratic, and cyclotomic fields.
Publisher: Courier Corporation
ISBN: 048615436X
Category : Mathematics
Languages : en
Pages : 308
Book Description
Ideal either for classroom use or as exercises for mathematically minded individuals, this text introduces elementary valuation theory, extension of valuations, local and ordinary arithmetic fields, and global, quadratic, and cyclotomic fields.
Problems in Algebraic Number Theory
Author: M. Ram Murty
Publisher: Springer Science & Business Media
ISBN: 0387269983
Category : Mathematics
Languages : en
Pages : 354
Book Description
The problems are systematically arranged to reveal the evolution of concepts and ideas of the subject Includes various levels of problems - some are easy and straightforward, while others are more challenging All problems are elegantly solved
Publisher: Springer Science & Business Media
ISBN: 0387269983
Category : Mathematics
Languages : en
Pages : 354
Book Description
The problems are systematically arranged to reveal the evolution of concepts and ideas of the subject Includes various levels of problems - some are easy and straightforward, while others are more challenging All problems are elegantly solved
Number Theory
Author: Helmut Koch
Publisher: American Mathematical Soc.
ISBN: 9780821820544
Category : Mathematics
Languages : en
Pages : 390
Book Description
Algebraic number theory is one of the most refined creations in mathematics. It has been developed by some of the leading mathematicians of this and previous centuries. The primary goal of this book is to present the essential elements of algebraic number theory, including the theory of normal extensions up through a glimpse of class field theory. Following the example set for us by Kronecker, Weber, Hilbert and Artin, algebraic functions are handled here on an equal footing with algebraic numbers. This is done on the one hand to demonstrate the analogy between number fields and function fields, which is especially clear in the case where the ground field is a finite field. On the other hand, in this way one obtains an introduction to the theory of 'higher congruences' as an important element of 'arithmetic geometry'. Early chapters discuss topics in elementary number theory, such as Minkowski's geometry of numbers, public-key cryptography and a short proof of the Prime Number Theorem, following Newman and Zagier. Next, some of the tools of algebraic number theory are introduced, such as ideals, discriminants and valuations. These results are then applied to obtain results about function fields, including a proof of the Riemann-Roch Theorem and, as an application of cyclotomic fields, a proof of the first case of Fermat's Last Theorem. There are a detailed exposition of the theory of Hecke $L$-series, following Tate, and explicit applications to number theory, such as the Generalized Riemann Hypothesis. Chapter 9 brings together the earlier material through the study of quadratic number fields. Finally, Chapter 10 gives an introduction to class field theory. The book attempts as much as possible to give simple proofs. It can be used by a beginner in algebraic number theory who wishes to see some of the true power and depth of the subject. The book is suitable for two one-semester courses, with the first four chapters serving to develop the basic material. Chapters 6 through 9 could be used on their own as a second semester course.
Publisher: American Mathematical Soc.
ISBN: 9780821820544
Category : Mathematics
Languages : en
Pages : 390
Book Description
Algebraic number theory is one of the most refined creations in mathematics. It has been developed by some of the leading mathematicians of this and previous centuries. The primary goal of this book is to present the essential elements of algebraic number theory, including the theory of normal extensions up through a glimpse of class field theory. Following the example set for us by Kronecker, Weber, Hilbert and Artin, algebraic functions are handled here on an equal footing with algebraic numbers. This is done on the one hand to demonstrate the analogy between number fields and function fields, which is especially clear in the case where the ground field is a finite field. On the other hand, in this way one obtains an introduction to the theory of 'higher congruences' as an important element of 'arithmetic geometry'. Early chapters discuss topics in elementary number theory, such as Minkowski's geometry of numbers, public-key cryptography and a short proof of the Prime Number Theorem, following Newman and Zagier. Next, some of the tools of algebraic number theory are introduced, such as ideals, discriminants and valuations. These results are then applied to obtain results about function fields, including a proof of the Riemann-Roch Theorem and, as an application of cyclotomic fields, a proof of the first case of Fermat's Last Theorem. There are a detailed exposition of the theory of Hecke $L$-series, following Tate, and explicit applications to number theory, such as the Generalized Riemann Hypothesis. Chapter 9 brings together the earlier material through the study of quadratic number fields. Finally, Chapter 10 gives an introduction to class field theory. The book attempts as much as possible to give simple proofs. It can be used by a beginner in algebraic number theory who wishes to see some of the true power and depth of the subject. The book is suitable for two one-semester courses, with the first four chapters serving to develop the basic material. Chapters 6 through 9 could be used on their own as a second semester course.
A Course in Algebraic Number Theory
Author: Robert B. Ash
Publisher: Courier Corporation
ISBN: 0486477541
Category : Mathematics
Languages : en
Pages : 130
Book Description
This text for a graduate-level course covers the general theory of factorization of ideals in Dedekind domains as well as the number field case. It illustrates the use of Kummer's theorem, proofs of the Dirichlet unit theorem, and Minkowski bounds on element and ideal norms. 2003 edition.
Publisher: Courier Corporation
ISBN: 0486477541
Category : Mathematics
Languages : en
Pages : 130
Book Description
This text for a graduate-level course covers the general theory of factorization of ideals in Dedekind domains as well as the number field case. It illustrates the use of Kummer's theorem, proofs of the Dirichlet unit theorem, and Minkowski bounds on element and ideal norms. 2003 edition.
Classical Theory of Algebraic Numbers
Author: Paulo Ribenboim
Publisher: Springer Science & Business Media
ISBN: 0387216901
Category : Mathematics
Languages : en
Pages : 676
Book Description
The exposition of the classical theory of algebraic numbers is clear and thorough, and there is a large number of exercises as well as worked out numerical examples. A careful study of this book will provide a solid background to the learning of more recent topics.
Publisher: Springer Science & Business Media
ISBN: 0387216901
Category : Mathematics
Languages : en
Pages : 676
Book Description
The exposition of the classical theory of algebraic numbers is clear and thorough, and there is a large number of exercises as well as worked out numerical examples. A careful study of this book will provide a solid background to the learning of more recent topics.
Algorithmic Algebraic Number Theory
Author: M. Pohst
Publisher: Cambridge University Press
ISBN: 9780521596695
Category : Mathematics
Languages : en
Pages : 520
Book Description
Now in paperback, this classic book is addresssed to all lovers of number theory. On the one hand, it gives a comprehensive introduction to constructive algebraic number theory, and is therefore especially suited as a textbook for a course on that subject. On the other hand many parts go beyond an introduction an make the user familliar with recent research in the field. For experimental number theoreticians new methods are developed and new results are obtained which are of great importance for them. Both computer scientists interested in higher arithmetic and those teaching algebraic number theory will find the book of value.
Publisher: Cambridge University Press
ISBN: 9780521596695
Category : Mathematics
Languages : en
Pages : 520
Book Description
Now in paperback, this classic book is addresssed to all lovers of number theory. On the one hand, it gives a comprehensive introduction to constructive algebraic number theory, and is therefore especially suited as a textbook for a course on that subject. On the other hand many parts go beyond an introduction an make the user familliar with recent research in the field. For experimental number theoreticians new methods are developed and new results are obtained which are of great importance for them. Both computer scientists interested in higher arithmetic and those teaching algebraic number theory will find the book of value.
Theory of Algebraic Integers
Author: Richard Dedekind
Publisher: Cambridge University Press
ISBN: 0521565189
Category : Mathematics
Languages : en
Pages : 170
Book Description
A translation of a classic work by one of the truly great figures of mathematics.
Publisher: Cambridge University Press
ISBN: 0521565189
Category : Mathematics
Languages : en
Pages : 170
Book Description
A translation of a classic work by one of the truly great figures of mathematics.