Author: Roland N. Pittman
Publisher: Biota Publishing
ISBN: 1615047212
Category : Medical
Languages : en
Pages : 117
Book Description
This presentation describes various aspects of the regulation of tissue oxygenation, including the roles of the circulatory system, respiratory system, and blood, the carrier of oxygen within these components of the cardiorespiratory system. The respiratory system takes oxygen from the atmosphere and transports it by diffusion from the air in the alveoli to the blood flowing through the pulmonary capillaries. The cardiovascular system then moves the oxygenated blood from the heart to the microcirculation of the various organs by convection, where oxygen is released from hemoglobin in the red blood cells and moves to the parenchymal cells of each tissue by diffusion. Oxygen that has diffused into cells is then utilized in the mitochondria to produce adenosine triphosphate (ATP), the energy currency of all cells. The mitochondria are able to produce ATP until the oxygen tension or PO2 on the cell surface falls to a critical level of about 4–5 mm Hg. Thus, in order to meet the energetic needs of cells, it is important to maintain a continuous supply of oxygen to the mitochondria at or above the critical PO2 . In order to accomplish this desired outcome, the cardiorespiratory system, including the blood, must be capable of regulation to ensure survival of all tissues under a wide range of circumstances. The purpose of this presentation is to provide basic information about the operation and regulation of the cardiovascular and respiratory systems, as well as the properties of the blood and parenchymal cells, so that a fundamental understanding of the regulation of tissue oxygenation is achieved.
Regulation of Tissue Oxygenation, Second Edition
Author: Roland N. Pittman
Publisher: Biota Publishing
ISBN: 1615047212
Category : Medical
Languages : en
Pages : 117
Book Description
This presentation describes various aspects of the regulation of tissue oxygenation, including the roles of the circulatory system, respiratory system, and blood, the carrier of oxygen within these components of the cardiorespiratory system. The respiratory system takes oxygen from the atmosphere and transports it by diffusion from the air in the alveoli to the blood flowing through the pulmonary capillaries. The cardiovascular system then moves the oxygenated blood from the heart to the microcirculation of the various organs by convection, where oxygen is released from hemoglobin in the red blood cells and moves to the parenchymal cells of each tissue by diffusion. Oxygen that has diffused into cells is then utilized in the mitochondria to produce adenosine triphosphate (ATP), the energy currency of all cells. The mitochondria are able to produce ATP until the oxygen tension or PO2 on the cell surface falls to a critical level of about 4–5 mm Hg. Thus, in order to meet the energetic needs of cells, it is important to maintain a continuous supply of oxygen to the mitochondria at or above the critical PO2 . In order to accomplish this desired outcome, the cardiorespiratory system, including the blood, must be capable of regulation to ensure survival of all tissues under a wide range of circumstances. The purpose of this presentation is to provide basic information about the operation and regulation of the cardiovascular and respiratory systems, as well as the properties of the blood and parenchymal cells, so that a fundamental understanding of the regulation of tissue oxygenation is achieved.
Publisher: Biota Publishing
ISBN: 1615047212
Category : Medical
Languages : en
Pages : 117
Book Description
This presentation describes various aspects of the regulation of tissue oxygenation, including the roles of the circulatory system, respiratory system, and blood, the carrier of oxygen within these components of the cardiorespiratory system. The respiratory system takes oxygen from the atmosphere and transports it by diffusion from the air in the alveoli to the blood flowing through the pulmonary capillaries. The cardiovascular system then moves the oxygenated blood from the heart to the microcirculation of the various organs by convection, where oxygen is released from hemoglobin in the red blood cells and moves to the parenchymal cells of each tissue by diffusion. Oxygen that has diffused into cells is then utilized in the mitochondria to produce adenosine triphosphate (ATP), the energy currency of all cells. The mitochondria are able to produce ATP until the oxygen tension or PO2 on the cell surface falls to a critical level of about 4–5 mm Hg. Thus, in order to meet the energetic needs of cells, it is important to maintain a continuous supply of oxygen to the mitochondria at or above the critical PO2 . In order to accomplish this desired outcome, the cardiorespiratory system, including the blood, must be capable of regulation to ensure survival of all tissues under a wide range of circumstances. The purpose of this presentation is to provide basic information about the operation and regulation of the cardiovascular and respiratory systems, as well as the properties of the blood and parenchymal cells, so that a fundamental understanding of the regulation of tissue oxygenation is achieved.
Your Circulatory System Works!
Author: Flora Brett
Publisher: Capstone
ISBN: 1491420634
Category : Juvenile Nonfiction
Languages : en
Pages : 25
Book Description
Text and images describe the circulatory system.
Publisher: Capstone
ISBN: 1491420634
Category : Juvenile Nonfiction
Languages : en
Pages : 25
Book Description
Text and images describe the circulatory system.
The Circulatory System
Author: Susan Whittemore
Publisher: Infobase Publishing
ISBN: 1438107668
Category : Biology
Languages : en
Pages : 113
Book Description
Describes the anatomy and functions of the human circulatory system and how it responds to increased activity, the microgravity of space, and other changes.
Publisher: Infobase Publishing
ISBN: 1438107668
Category : Biology
Languages : en
Pages : 113
Book Description
Describes the anatomy and functions of the human circulatory system and how it responds to increased activity, the microgravity of space, and other changes.
How the Circulatory System Works
Author: Robert E. Mehler
Publisher: Wiley-Blackwell
ISBN: 9780865425484
Category : Medical
Languages : en
Pages : 96
Book Description
This book includes 10 lectures in a light, entertaining style, with each "lecture" building on the previous one - making it easy for the reader to comprehend the vastly complicated functions of the circulatory system. The length of the text has intentionally been kept short; it is neither exhaustively complete nor over-simplified. It is enriched by details about basic biologic mechanisms and clever ways nature has solved a problem or achieved a result.
Publisher: Wiley-Blackwell
ISBN: 9780865425484
Category : Medical
Languages : en
Pages : 96
Book Description
This book includes 10 lectures in a light, entertaining style, with each "lecture" building on the previous one - making it easy for the reader to comprehend the vastly complicated functions of the circulatory system. The length of the text has intentionally been kept short; it is neither exhaustively complete nor over-simplified. It is enriched by details about basic biologic mechanisms and clever ways nature has solved a problem or achieved a result.
Regulation of Coronary Blood Flow
Author: Michitoshi Inoue
Publisher: Springer Science & Business Media
ISBN: 4431683674
Category : Medical
Languages : en
Pages : 330
Book Description
Research centering on blood flow in the heart continues to hold an important position, especially since a better understanding of the subject may help reduce the incidence of coronary arterial disease and heart attacks. This book summarizes recent advances in the field; it is the product of fruitful cooperation among international scientists who met in Japan in May, 1990 to discuss the regulation of coronary blood flow.
Publisher: Springer Science & Business Media
ISBN: 4431683674
Category : Medical
Languages : en
Pages : 330
Book Description
Research centering on blood flow in the heart continues to hold an important position, especially since a better understanding of the subject may help reduce the incidence of coronary arterial disease and heart attacks. This book summarizes recent advances in the field; it is the product of fruitful cooperation among international scientists who met in Japan in May, 1990 to discuss the regulation of coronary blood flow.
The Circulatory System
Author: Christine Taylor-Butler
Publisher: A True Book: Health and the Hu
ISBN:
Category : Juvenile Nonfiction
Languages : en
Pages : 56
Book Description
Discusses the circulatory system and ways to keep your heart healthy, and shows a map of blood's route around the body.
Publisher: A True Book: Health and the Hu
ISBN:
Category : Juvenile Nonfiction
Languages : en
Pages : 56
Book Description
Discusses the circulatory system and ways to keep your heart healthy, and shows a map of blood's route around the body.
Skeletal Muscle Circulation
Author: Ronald J. Korthuis
Publisher: Morgan & Claypool Publishers
ISBN: 1615041834
Category : Medical
Languages : en
Pages : 147
Book Description
The aim of this treatise is to summarize the current understanding of the mechanisms for blood flow control to skeletal muscle under resting conditions, how perfusion is elevated (exercise hyperemia) to meet the increased demand for oxygen and other substrates during exercise, mechanisms underlying the beneficial effects of regular physical activity on cardiovascular health, the regulation of transcapillary fluid filtration and protein flux across the microvascular exchange vessels, and the role of changes in the skeletal muscle circulation in pathologic states. Skeletal muscle is unique among organs in that its blood flow can change over a remarkably large range. Compared to blood flow at rest, muscle blood flow can increase by more than 20-fold on average during intense exercise, while perfusion of certain individual white muscles or portions of those muscles can increase by as much as 80-fold. This is compared to maximal increases of 4- to 6-fold in the coronary circulation during exercise. These increases in muscle perfusion are required to meet the enormous demands for oxygen and nutrients by the active muscles. Because of its large mass and the fact that skeletal muscles receive 25% of the cardiac output at rest, sympathetically mediated vasoconstriction in vessels supplying this tissue allows central hemodynamic variables (e.g., blood pressure) to be spared during stresses such as hypovolemic shock. Sympathetic vasoconstriction in skeletal muscle in such pathologic conditions also effectively shunts blood flow away from muscles to tissues that are more sensitive to reductions in their blood supply that might otherwise occur. Again, because of its large mass and percentage of cardiac output directed to skeletal muscle, alterations in blood vessel structure and function with chronic disease (e.g., hypertension) contribute significantly to the pathology of such disorders. Alterations in skeletal muscle vascular resistance and/or in the exchange properties of this vascular bed also modify transcapillary fluid filtration and solute movement across the microvascular barrier to influence muscle function and contribute to disease pathology. Finally, it is clear that exercise training induces an adaptive transformation to a protected phenotype in the vasculature supplying skeletal muscle and other tissues to promote overall cardiovascular health. Table of Contents: Introduction / Anatomy of Skeletal Muscle and Its Vascular Supply / Regulation of Vascular Tone in Skeletal Muscle / Exercise Hyperemia and Regulation of Tissue Oxygenation During Muscular Activity / Microvascular Fluid and Solute Exchange in Skeletal Muscle / Skeletal Muscle Circulation in Aging and Disease States: Protective Effects of Exercise / References
Publisher: Morgan & Claypool Publishers
ISBN: 1615041834
Category : Medical
Languages : en
Pages : 147
Book Description
The aim of this treatise is to summarize the current understanding of the mechanisms for blood flow control to skeletal muscle under resting conditions, how perfusion is elevated (exercise hyperemia) to meet the increased demand for oxygen and other substrates during exercise, mechanisms underlying the beneficial effects of regular physical activity on cardiovascular health, the regulation of transcapillary fluid filtration and protein flux across the microvascular exchange vessels, and the role of changes in the skeletal muscle circulation in pathologic states. Skeletal muscle is unique among organs in that its blood flow can change over a remarkably large range. Compared to blood flow at rest, muscle blood flow can increase by more than 20-fold on average during intense exercise, while perfusion of certain individual white muscles or portions of those muscles can increase by as much as 80-fold. This is compared to maximal increases of 4- to 6-fold in the coronary circulation during exercise. These increases in muscle perfusion are required to meet the enormous demands for oxygen and nutrients by the active muscles. Because of its large mass and the fact that skeletal muscles receive 25% of the cardiac output at rest, sympathetically mediated vasoconstriction in vessels supplying this tissue allows central hemodynamic variables (e.g., blood pressure) to be spared during stresses such as hypovolemic shock. Sympathetic vasoconstriction in skeletal muscle in such pathologic conditions also effectively shunts blood flow away from muscles to tissues that are more sensitive to reductions in their blood supply that might otherwise occur. Again, because of its large mass and percentage of cardiac output directed to skeletal muscle, alterations in blood vessel structure and function with chronic disease (e.g., hypertension) contribute significantly to the pathology of such disorders. Alterations in skeletal muscle vascular resistance and/or in the exchange properties of this vascular bed also modify transcapillary fluid filtration and solute movement across the microvascular barrier to influence muscle function and contribute to disease pathology. Finally, it is clear that exercise training induces an adaptive transformation to a protected phenotype in the vasculature supplying skeletal muscle and other tissues to promote overall cardiovascular health. Table of Contents: Introduction / Anatomy of Skeletal Muscle and Its Vascular Supply / Regulation of Vascular Tone in Skeletal Muscle / Exercise Hyperemia and Regulation of Tissue Oxygenation During Muscular Activity / Microvascular Fluid and Solute Exchange in Skeletal Muscle / Skeletal Muscle Circulation in Aging and Disease States: Protective Effects of Exercise / References
Hematology
Author: Ronald Hoffman
Publisher:
ISBN: 9780443066283
Category : Blood
Languages : en
Pages : 2821
Book Description
Publisher:
ISBN: 9780443066283
Category : Blood
Languages : en
Pages : 2821
Book Description
Circulatory System, The
Author: Kay Manolis
Publisher: Bellwether Media
ISBN: 1612113176
Category : Juvenile Nonfiction
Languages : en
Pages : 26
Book Description
How does blood move around inside the human body? Students will learn all about the heart, blood cells, blood vessels, and other important parts of the circulatory system.
Publisher: Bellwether Media
ISBN: 1612113176
Category : Juvenile Nonfiction
Languages : en
Pages : 26
Book Description
How does blood move around inside the human body? Students will learn all about the heart, blood cells, blood vessels, and other important parts of the circulatory system.
Vascular Biology of the Placenta
Author: Yuping Wang
Publisher: Biota Publishing
ISBN: 1615047514
Category : Medical
Languages : en
Pages : 126
Book Description
The placenta is an organ that connects the developing fetus to the uterine wall, thereby allowing nutrient uptake, waste elimination, and gas exchange via the mother's blood supply. Proper vascular development in the placenta is fundamental to ensuring a healthy fetus and successful pregnancy. This book provides an up-to-date summary and synthesis of knowledge regarding placental vascular biology and discusses the relevance of this vascular bed to the functions of the human placenta.
Publisher: Biota Publishing
ISBN: 1615047514
Category : Medical
Languages : en
Pages : 126
Book Description
The placenta is an organ that connects the developing fetus to the uterine wall, thereby allowing nutrient uptake, waste elimination, and gas exchange via the mother's blood supply. Proper vascular development in the placenta is fundamental to ensuring a healthy fetus and successful pregnancy. This book provides an up-to-date summary and synthesis of knowledge regarding placental vascular biology and discusses the relevance of this vascular bed to the functions of the human placenta.