Author: OpenStax
Publisher:
ISBN: 9781680920451
Category : Science
Languages : en
Pages : 622
Book Description
University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.
University Physics
Author: OpenStax
Publisher:
ISBN: 9781680920451
Category : Science
Languages : en
Pages : 622
Book Description
University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.
Publisher:
ISBN: 9781680920451
Category : Science
Languages : en
Pages : 622
Book Description
University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.
FRCR Physics Notes
Author: Christopher Clarke
Publisher:
ISBN: 9781999988524
Category :
Languages : en
Pages : 320
Book Description
Comprehensive medical imaging physics notes aimed at those sitting the first FRCR physics exam in the UK and covering the scope of the Royal College of Radiologists syllabus. Written by Radiologists, the notes are concise and clearly organised with 100's of beautiful diagrams to aid understanding. The notes cover all of radiology physics, including basic science, x-ray imaging, CT, ultrasound, MRI, molecular imaging, and radiation dosimetry, protection and legislation. Although aimed at UK radiology trainees, it is also suitable for international residents taking similar examinations, postgraduate medical physics students and radiographers. The notes provide an excellent overview for anyone interested in the physics of radiology or just refreshing their knowledge. This third edition includes updates to reflect new legislation and many new illustrations, added sections, and removal of content no longer relevent to the FRCR physics exam. This edition has gone through strict critique and evaluation by physicists and other specialists to provide an accurate, understandable and up-to-date resource. The book summarises and pulls together content from the FRCR Physics Notes at Radiology Cafe and delivers it as a paperback or eBook for you to keep and read anytime. There are 7 main chapters, which are further subdivided into 60 sub-chapters so topics are easy to find. There is a comprehensive appendix and index at the back of the book.
Publisher:
ISBN: 9781999988524
Category :
Languages : en
Pages : 320
Book Description
Comprehensive medical imaging physics notes aimed at those sitting the first FRCR physics exam in the UK and covering the scope of the Royal College of Radiologists syllabus. Written by Radiologists, the notes are concise and clearly organised with 100's of beautiful diagrams to aid understanding. The notes cover all of radiology physics, including basic science, x-ray imaging, CT, ultrasound, MRI, molecular imaging, and radiation dosimetry, protection and legislation. Although aimed at UK radiology trainees, it is also suitable for international residents taking similar examinations, postgraduate medical physics students and radiographers. The notes provide an excellent overview for anyone interested in the physics of radiology or just refreshing their knowledge. This third edition includes updates to reflect new legislation and many new illustrations, added sections, and removal of content no longer relevent to the FRCR physics exam. This edition has gone through strict critique and evaluation by physicists and other specialists to provide an accurate, understandable and up-to-date resource. The book summarises and pulls together content from the FRCR Physics Notes at Radiology Cafe and delivers it as a paperback or eBook for you to keep and read anytime. There are 7 main chapters, which are further subdivided into 60 sub-chapters so topics are easy to find. There is a comprehensive appendix and index at the back of the book.
Review of Radiologic Physics
Author: William Sensakovic
Publisher: Lippincott Williams & Wilkins
ISBN: 1975199057
Category : Medical
Languages : en
Pages : 537
Book Description
Offering a complete review for radiology residents and radiologic technologists preparing for certification, Review of Radiologic Physics, 5th Edition, by Dr. William F. Sensakovic, is a high-yield, efficient resource for today’s clinically focused exams. Now fully up to date, this edition covers x-ray production and interactions, projection and tomographic imaging, image quality, radiobiology, radiation protection, nuclear medicine, ultrasound, and magnetic resonance—all of the important physics information you need to understand the factors that improve or degrade image quality.
Publisher: Lippincott Williams & Wilkins
ISBN: 1975199057
Category : Medical
Languages : en
Pages : 537
Book Description
Offering a complete review for radiology residents and radiologic technologists preparing for certification, Review of Radiologic Physics, 5th Edition, by Dr. William F. Sensakovic, is a high-yield, efficient resource for today’s clinically focused exams. Now fully up to date, this edition covers x-ray production and interactions, projection and tomographic imaging, image quality, radiobiology, radiation protection, nuclear medicine, ultrasound, and magnetic resonance—all of the important physics information you need to understand the factors that improve or degrade image quality.
Airport Passenger Screening Using Backscatter X-Ray Machines
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309371333
Category : Technology & Engineering
Languages : en
Pages : 203
Book Description
Passenger screening at commercial airports in the United States has gone through significant changes since the events of September 11, 2001. In response to increased concern over terrorist attacks on aircrafts, the Transportation Security Administration (TSA) has deployed security systems of advanced imaging technology (AIT) to screen passengers at airports. To date (December 2014), TSA has deployed AITs in U.S. airports of two different technologies that use different types of radiation to detect threats: millimeter wave and X-ray backscatter AIT systems. X-ray backscatter AITs were deployed in U.S. airports in 2008 and subsequently removed from all airports by June 2013 due to privacy concerns. TSA is looking to deploy a second-generation X-ray backscatter AIT equipped with privacy software to eliminate production of an image of the person being screened in order to alleviate these concerns. This report reviews previous studies as well as current processes used by the Department of Homeland Security and equipment manufacturers to estimate radiation exposures resulting from backscatter X-ray advanced imaging technology system use in screening air travelers. Airport Passenger Screening Using Backscatter X-Ray Machines examines whether exposures comply with applicable health and safety standards for public and occupational exposures to ionizing radiation and whether system design, operating procedures, and maintenance procedures are appropriate to prevent over exposures of travelers and operators to ionizing radiation. This study aims to address concerns about exposure to radiation from X-ray backscatter AITs raised by Congress, individuals within the scientific community, and others.
Publisher: National Academies Press
ISBN: 0309371333
Category : Technology & Engineering
Languages : en
Pages : 203
Book Description
Passenger screening at commercial airports in the United States has gone through significant changes since the events of September 11, 2001. In response to increased concern over terrorist attacks on aircrafts, the Transportation Security Administration (TSA) has deployed security systems of advanced imaging technology (AIT) to screen passengers at airports. To date (December 2014), TSA has deployed AITs in U.S. airports of two different technologies that use different types of radiation to detect threats: millimeter wave and X-ray backscatter AIT systems. X-ray backscatter AITs were deployed in U.S. airports in 2008 and subsequently removed from all airports by June 2013 due to privacy concerns. TSA is looking to deploy a second-generation X-ray backscatter AIT equipped with privacy software to eliminate production of an image of the person being screened in order to alleviate these concerns. This report reviews previous studies as well as current processes used by the Department of Homeland Security and equipment manufacturers to estimate radiation exposures resulting from backscatter X-ray advanced imaging technology system use in screening air travelers. Airport Passenger Screening Using Backscatter X-Ray Machines examines whether exposures comply with applicable health and safety standards for public and occupational exposures to ionizing radiation and whether system design, operating procedures, and maintenance procedures are appropriate to prevent over exposures of travelers and operators to ionizing radiation. This study aims to address concerns about exposure to radiation from X-ray backscatter AITs raised by Congress, individuals within the scientific community, and others.
Medical Imaging Systems
Author: Andreas Maier
Publisher: Springer
ISBN: 3319965204
Category : Computers
Languages : en
Pages : 263
Book Description
This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.
Publisher: Springer
ISBN: 3319965204
Category : Computers
Languages : en
Pages : 263
Book Description
This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.
Materials Characterization Using Nondestructive Evaluation (NDE) Methods
Author: Gerhard Huebschen
Publisher: Woodhead Publishing
ISBN: 008100057X
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. - Gives an overview of established and new NDT techniques, including scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques - Reviews the determination of microstructural and mechanical properties - Focuses on materials used in the automotive, aerospace, power plants, and infrastructure construction industries - Serves as a highly desirable resource for both long-term monitoring and short-term assessment of materials
Publisher: Woodhead Publishing
ISBN: 008100057X
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. - Gives an overview of established and new NDT techniques, including scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques - Reviews the determination of microstructural and mechanical properties - Focuses on materials used in the automotive, aerospace, power plants, and infrastructure construction industries - Serves as a highly desirable resource for both long-term monitoring and short-term assessment of materials
Scientific Papers of Arthur Holly Compton
Author: Arthur Holly Compton
Publisher: University of Chicago Press
ISBN: 9780226114309
Category : History
Languages : en
Pages : 822
Book Description
Arthur Holly Compton was one of the great leaders in physics of the twentieth century. In this volume, Robert S. Shankland, who was once a student of Compton's, has collected and edited the most important of Professor Compton's papers on X-rays—the field of his greatest achievement—and on other related topics. Compton entered the field of X-ray research in 1913 and carried on active work until the 1930s, when he began to specialize in cosmic rays. During the years when Compton was an active leader in X-ray research, he made many notable contributions which are reflected in the papers presented here. He was the first to prove several important optical properties of X-rays, including scattering, complete polarization, and total reflection. He was also the first, with his student R. L. Doan, to use ruled gratings for the production of X-ray spectra. Professor Compton's greatest discovery, for which he was awarded a Nobel Prize in 1927, was the Compton Effect. This was the outgrowth of experiments he had initiated during a year at Cambridge in 1919-20. He did the major portion of these experiments at Washington University in St. Louis during the period 1920-24. His work demonstrated that in the scattering of X-rays by electrons, the radiation behaves like corpuscles, and that the interaction between the X-ray corpuscles and the electrons in the scatter is completely described by the principles of the conservation of energy and momentum for the collisions of particles. In his introduction, Professor Shankland gives a historical account of the papers, narrates Professor Compton's early scientific career, and shows how he arrived at a quantum explanation of the Compton scattering after eliminating all classical explanations.
Publisher: University of Chicago Press
ISBN: 9780226114309
Category : History
Languages : en
Pages : 822
Book Description
Arthur Holly Compton was one of the great leaders in physics of the twentieth century. In this volume, Robert S. Shankland, who was once a student of Compton's, has collected and edited the most important of Professor Compton's papers on X-rays—the field of his greatest achievement—and on other related topics. Compton entered the field of X-ray research in 1913 and carried on active work until the 1930s, when he began to specialize in cosmic rays. During the years when Compton was an active leader in X-ray research, he made many notable contributions which are reflected in the papers presented here. He was the first to prove several important optical properties of X-rays, including scattering, complete polarization, and total reflection. He was also the first, with his student R. L. Doan, to use ruled gratings for the production of X-ray spectra. Professor Compton's greatest discovery, for which he was awarded a Nobel Prize in 1927, was the Compton Effect. This was the outgrowth of experiments he had initiated during a year at Cambridge in 1919-20. He did the major portion of these experiments at Washington University in St. Louis during the period 1920-24. His work demonstrated that in the scattering of X-rays by electrons, the radiation behaves like corpuscles, and that the interaction between the X-ray corpuscles and the electrons in the scatter is completely described by the principles of the conservation of energy and momentum for the collisions of particles. In his introduction, Professor Shankland gives a historical account of the papers, narrates Professor Compton's early scientific career, and shows how he arrived at a quantum explanation of the Compton scattering after eliminating all classical explanations.
Graphs of the Compton Energy-angle Relationship and the Klein-Nishina Formula from 10 Kev to 500 Mev
Author: Ann T. Nelms
Publisher:
ISBN:
Category : Electrons
Languages : en
Pages : 100
Book Description
Publisher:
ISBN:
Category : Electrons
Languages : en
Pages : 100
Book Description
Radiation Exposure and Image Quality in X-Ray Diagnostic Radiology
Author: Horst Aichinger
Publisher: Springer Science & Business Media
ISBN: 3642112412
Category : Medical
Languages : en
Pages : 310
Book Description
This completely updated second edition of Radiation Exposure and Image Quality in X-ray Diagnostic Radiology provides the reader with detailed guidance on the optimization of radiological imaging. The basic physical principles of diagnostic radiology are first presented in detail, and their application to clinical problems is then carefully explored. The final section is a supplement containing tables of data and graphical depictions of X-ray spectra, interaction coefficients, characteristics of X-ray beams, and other aspects relevant to patient dose calculations. In addition, a complementary CD-ROM contains a user-friendly Excel file database covering these aspects that can be used in the reader’s own programs. This book will be an invaluable aid to medical physicists when performing calculations relating to patient dose and image quality, and will also prove useful for diagnostic radiologists and engineers.
Publisher: Springer Science & Business Media
ISBN: 3642112412
Category : Medical
Languages : en
Pages : 310
Book Description
This completely updated second edition of Radiation Exposure and Image Quality in X-ray Diagnostic Radiology provides the reader with detailed guidance on the optimization of radiological imaging. The basic physical principles of diagnostic radiology are first presented in detail, and their application to clinical problems is then carefully explored. The final section is a supplement containing tables of data and graphical depictions of X-ray spectra, interaction coefficients, characteristics of X-ray beams, and other aspects relevant to patient dose calculations. In addition, a complementary CD-ROM contains a user-friendly Excel file database covering these aspects that can be used in the reader’s own programs. This book will be an invaluable aid to medical physicists when performing calculations relating to patient dose and image quality, and will also prove useful for diagnostic radiologists and engineers.
X-Ray Compton Scattering
Author: Malcolm Cooper
Publisher: OUP Oxford
ISBN: 0191523038
Category : Science
Languages : en
Pages : 392
Book Description
With the development of potent x-ray sources at many synchrotron laboratories worldwide, Compton scattering has become a standard tool for studying electron densities in materials. This book provides condensed matter and materials physicists with an authoritative, up-to-date, and very accessible account of the Compton scattering method, leading to a fundamental understanding of the electrical and magnetic properties of solid materials. The spectrum of Compton scattered x-rays is particularly sensitive to this behaviour and thus can be used as a direct probe and to test the predictions of theory. The current generation of synchrotron facilities allows this method to be readily exploited to study the ground state electron density in both elements and in complex compounds. It is important that those working in related fields, as well as the increasing number directly using the Compton method, have a comprehensive assessment of what is now possible and how to achieve it, in addition to a full understanding of its theoretical basis. This monograph is unique and timely, since little of what is described, was practicable a decade ago. The development of synchrotron radiation facilities has ensured that the technique described here will remain a powerful probe of electron charge and spin density for many years to come.
Publisher: OUP Oxford
ISBN: 0191523038
Category : Science
Languages : en
Pages : 392
Book Description
With the development of potent x-ray sources at many synchrotron laboratories worldwide, Compton scattering has become a standard tool for studying electron densities in materials. This book provides condensed matter and materials physicists with an authoritative, up-to-date, and very accessible account of the Compton scattering method, leading to a fundamental understanding of the electrical and magnetic properties of solid materials. The spectrum of Compton scattered x-rays is particularly sensitive to this behaviour and thus can be used as a direct probe and to test the predictions of theory. The current generation of synchrotron facilities allows this method to be readily exploited to study the ground state electron density in both elements and in complex compounds. It is important that those working in related fields, as well as the increasing number directly using the Compton method, have a comprehensive assessment of what is now possible and how to achieve it, in addition to a full understanding of its theoretical basis. This monograph is unique and timely, since little of what is described, was practicable a decade ago. The development of synchrotron radiation facilities has ensured that the technique described here will remain a powerful probe of electron charge and spin density for many years to come.