Author: Carlos Bordons
Publisher: Springer Nature
ISBN: 3030245705
Category : Technology & Engineering
Languages : en
Pages : 280
Book Description
The book shows how the operation of renewable-energy microgrids can be facilitated by the use of model predictive control (MPC). It gives readers a wide overview of control methods for microgrid operation at all levels, ranging from quality of service, to integration in the electricity market. MPC-based solutions are provided for the main control issues related to energy management and optimal operation of microgrids. The authors present MPC techniques for case studies that include different renewable sources – mainly photovoltaic and wind – as well as hybrid storage using batteries, hydrogen and supercapacitors. Experimental results for a pilot-scale microgrid are also presented, as well as simulations of scheduling in the electricity market and integration of electric and hybrid vehicles into the microgrid. in order to replicate the examples provided in the book and to develop and validate control algorithms on existing or projected microgrids. Model Predictive Control of Microgrids will interest researchers and practitioners, enabling them to keep abreast of a rapidly developing field. The text will also help to guide graduate students through processes from the conception and initial design of a microgrid through its implementation to the optimization of microgrid management. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
Model Predictive Control of Microgrids
Author: Carlos Bordons
Publisher: Springer Nature
ISBN: 3030245705
Category : Technology & Engineering
Languages : en
Pages : 280
Book Description
The book shows how the operation of renewable-energy microgrids can be facilitated by the use of model predictive control (MPC). It gives readers a wide overview of control methods for microgrid operation at all levels, ranging from quality of service, to integration in the electricity market. MPC-based solutions are provided for the main control issues related to energy management and optimal operation of microgrids. The authors present MPC techniques for case studies that include different renewable sources – mainly photovoltaic and wind – as well as hybrid storage using batteries, hydrogen and supercapacitors. Experimental results for a pilot-scale microgrid are also presented, as well as simulations of scheduling in the electricity market and integration of electric and hybrid vehicles into the microgrid. in order to replicate the examples provided in the book and to develop and validate control algorithms on existing or projected microgrids. Model Predictive Control of Microgrids will interest researchers and practitioners, enabling them to keep abreast of a rapidly developing field. The text will also help to guide graduate students through processes from the conception and initial design of a microgrid through its implementation to the optimization of microgrid management. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
Publisher: Springer Nature
ISBN: 3030245705
Category : Technology & Engineering
Languages : en
Pages : 280
Book Description
The book shows how the operation of renewable-energy microgrids can be facilitated by the use of model predictive control (MPC). It gives readers a wide overview of control methods for microgrid operation at all levels, ranging from quality of service, to integration in the electricity market. MPC-based solutions are provided for the main control issues related to energy management and optimal operation of microgrids. The authors present MPC techniques for case studies that include different renewable sources – mainly photovoltaic and wind – as well as hybrid storage using batteries, hydrogen and supercapacitors. Experimental results for a pilot-scale microgrid are also presented, as well as simulations of scheduling in the electricity market and integration of electric and hybrid vehicles into the microgrid. in order to replicate the examples provided in the book and to develop and validate control algorithms on existing or projected microgrids. Model Predictive Control of Microgrids will interest researchers and practitioners, enabling them to keep abreast of a rapidly developing field. The text will also help to guide graduate students through processes from the conception and initial design of a microgrid through its implementation to the optimization of microgrid management. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
Handbook of Model Predictive Control
Author: Saša V. Raković
Publisher: Springer
ISBN: 3319774891
Category : Science
Languages : en
Pages : 693
Book Description
Recent developments in model-predictive control promise remarkable opportunities for designing multi-input, multi-output control systems and improving the control of single-input, single-output systems. This volume provides a definitive survey of the latest model-predictive control methods available to engineers and scientists today. The initial set of chapters present various methods for managing uncertainty in systems, including stochastic model-predictive control. With the advent of affordable and fast computation, control engineers now need to think about using “computationally intensive controls,” so the second part of this book addresses the solution of optimization problems in “real” time for model-predictive control. The theory and applications of control theory often influence each other, so the last section of Handbook of Model Predictive Control rounds out the book with representative applications to automobiles, healthcare, robotics, and finance. The chapters in this volume will be useful to working engineers, scientists, and mathematicians, as well as students and faculty interested in the progression of control theory. Future developments in MPC will no doubt build from concepts demonstrated in this book and anyone with an interest in MPC will find fruitful information and suggestions for additional reading.
Publisher: Springer
ISBN: 3319774891
Category : Science
Languages : en
Pages : 693
Book Description
Recent developments in model-predictive control promise remarkable opportunities for designing multi-input, multi-output control systems and improving the control of single-input, single-output systems. This volume provides a definitive survey of the latest model-predictive control methods available to engineers and scientists today. The initial set of chapters present various methods for managing uncertainty in systems, including stochastic model-predictive control. With the advent of affordable and fast computation, control engineers now need to think about using “computationally intensive controls,” so the second part of this book addresses the solution of optimization problems in “real” time for model-predictive control. The theory and applications of control theory often influence each other, so the last section of Handbook of Model Predictive Control rounds out the book with representative applications to automobiles, healthcare, robotics, and finance. The chapters in this volume will be useful to working engineers, scientists, and mathematicians, as well as students and faculty interested in the progression of control theory. Future developments in MPC will no doubt build from concepts demonstrated in this book and anyone with an interest in MPC will find fruitful information and suggestions for additional reading.
Reinforcement Learning, second edition
Author: Richard S. Sutton
Publisher: MIT Press
ISBN: 0262352702
Category : Computers
Languages : en
Pages : 549
Book Description
The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.
Publisher: MIT Press
ISBN: 0262352702
Category : Computers
Languages : en
Pages : 549
Book Description
The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.
Predictive Control for Linear and Hybrid Systems
Author: Francesco Borrelli
Publisher: Cambridge University Press
ISBN: 1107016886
Category : Mathematics
Languages : en
Pages : 447
Book Description
With a simple approach that includes real-time applications and algorithms, this book covers the theory of model predictive control (MPC).
Publisher: Cambridge University Press
ISBN: 1107016886
Category : Mathematics
Languages : en
Pages : 447
Book Description
With a simple approach that includes real-time applications and algorithms, this book covers the theory of model predictive control (MPC).
Start-Up Creation
Author: F. Pacheco-Torgal
Publisher: Woodhead Publishing
ISBN: 0128199474
Category : Technology & Engineering
Languages : en
Pages : 456
Book Description
Start-up creation is the most distinctive feature of the entrepreneurial knowledge-based economy. It is also essential for economic growth and especially important in the current context of young graduate's high unemployment rates that are expected to increase in the next few decades. There are other books on the creation of start-up companies, designed to be of value to academics wishing to exploit the commercial value of a new technology or business solution, but none of these existing titles focus on start-up creation in the construction industry. In the second edition of this extremely successful title the editors present a state-of-the-art review on advanced technologies, and their application in several areas of the built environment covering energy efficiency, structural performance, air and water quality to inspire the creation of start-up companies from university research. Part One begins with the key factors behind successful start-up companies from university research, including the development of a business plan, start-up financing, and the importance of intellectual property. Part Two focuses on the use of Big Data, Intelligent decision support systems, the Internet of Things and their use in the energy efficiency of the built environment. Finally, Part three is an entire new section that focuses on several smartphone applications for the smart built environment. While in the first edition the section concerning apps for smart buildings had just two chapters, one for app programming basics and a second a case study on building security in this second edition the core of the book is about app development that constitutes 50% of the book. - Entire new section that was not available in the first edition on smart-phone applications and virtual assistance for infrastructure monitoring - Chapters on business plans, start-up financing and intellectual property have been brought fully up to date as well as algorithms, big data and the Internet of Things for eco-efficient smart buildings - Comprehensive guide to start-ups that arise from college and university research and how the application of advanced technology can be applied to the built environment
Publisher: Woodhead Publishing
ISBN: 0128199474
Category : Technology & Engineering
Languages : en
Pages : 456
Book Description
Start-up creation is the most distinctive feature of the entrepreneurial knowledge-based economy. It is also essential for economic growth and especially important in the current context of young graduate's high unemployment rates that are expected to increase in the next few decades. There are other books on the creation of start-up companies, designed to be of value to academics wishing to exploit the commercial value of a new technology or business solution, but none of these existing titles focus on start-up creation in the construction industry. In the second edition of this extremely successful title the editors present a state-of-the-art review on advanced technologies, and their application in several areas of the built environment covering energy efficiency, structural performance, air and water quality to inspire the creation of start-up companies from university research. Part One begins with the key factors behind successful start-up companies from university research, including the development of a business plan, start-up financing, and the importance of intellectual property. Part Two focuses on the use of Big Data, Intelligent decision support systems, the Internet of Things and their use in the energy efficiency of the built environment. Finally, Part three is an entire new section that focuses on several smartphone applications for the smart built environment. While in the first edition the section concerning apps for smart buildings had just two chapters, one for app programming basics and a second a case study on building security in this second edition the core of the book is about app development that constitutes 50% of the book. - Entire new section that was not available in the first edition on smart-phone applications and virtual assistance for infrastructure monitoring - Chapters on business plans, start-up financing and intellectual property have been brought fully up to date as well as algorithms, big data and the Internet of Things for eco-efficient smart buildings - Comprehensive guide to start-ups that arise from college and university research and how the application of advanced technology can be applied to the built environment
Theory of Multiobjective Optimization
Author: Yoshikazu Sawaragi
Publisher: Elsevier
ISBN: 0080958664
Category : Mathematics
Languages : en
Pages : 311
Book Description
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression. - Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering
Publisher: Elsevier
ISBN: 0080958664
Category : Mathematics
Languages : en
Pages : 311
Book Description
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression. - Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering
Next Generation Earth System Prediction
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309388805
Category : Science
Languages : en
Pages : 351
Book Description
As the nation's economic activities, security concerns, and stewardship of natural resources become increasingly complex and globally interrelated, they become ever more sensitive to adverse impacts from weather, climate, and other natural phenomena. For several decades, forecasts with lead times of a few days for weather and other environmental phenomena have yielded valuable information to improve decision-making across all sectors of society. Developing the capability to forecast environmental conditions and disruptive events several weeks and months in advance could dramatically increase the value and benefit of environmental predictions, saving lives, protecting property, increasing economic vitality, protecting the environment, and informing policy choices. Over the past decade, the ability to forecast weather and climate conditions on subseasonal to seasonal (S2S) timescales, i.e., two to fifty-two weeks in advance, has improved substantially. Although significant progress has been made, much work remains to make S2S predictions skillful enough, as well as optimally tailored and communicated, to enable widespread use. Next Generation Earth System Predictions presents a ten-year U.S. research agenda that increases the nation's S2S research and modeling capability, advances S2S forecasting, and aids in decision making at medium and extended lead times.
Publisher: National Academies Press
ISBN: 0309388805
Category : Science
Languages : en
Pages : 351
Book Description
As the nation's economic activities, security concerns, and stewardship of natural resources become increasingly complex and globally interrelated, they become ever more sensitive to adverse impacts from weather, climate, and other natural phenomena. For several decades, forecasts with lead times of a few days for weather and other environmental phenomena have yielded valuable information to improve decision-making across all sectors of society. Developing the capability to forecast environmental conditions and disruptive events several weeks and months in advance could dramatically increase the value and benefit of environmental predictions, saving lives, protecting property, increasing economic vitality, protecting the environment, and informing policy choices. Over the past decade, the ability to forecast weather and climate conditions on subseasonal to seasonal (S2S) timescales, i.e., two to fifty-two weeks in advance, has improved substantially. Although significant progress has been made, much work remains to make S2S predictions skillful enough, as well as optimally tailored and communicated, to enable widespread use. Next Generation Earth System Predictions presents a ten-year U.S. research agenda that increases the nation's S2S research and modeling capability, advances S2S forecasting, and aids in decision making at medium and extended lead times.
Meteorological monitoring guidance for regulatory modeling applications
Author:
Publisher: DIANE Publishing
ISBN: 1428901949
Category : Air quality
Languages : en
Pages : 171
Book Description
Publisher: DIANE Publishing
ISBN: 1428901949
Category : Air quality
Languages : en
Pages : 171
Book Description
Applied Predictive Modeling
Author: Max Kuhn
Publisher: Springer Science & Business Media
ISBN: 1461468493
Category : Medical
Languages : en
Pages : 595
Book Description
Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process. This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package. This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics.
Publisher: Springer Science & Business Media
ISBN: 1461468493
Category : Medical
Languages : en
Pages : 595
Book Description
Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process. This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package. This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics.
Model Predictive Control
Author: Basil Kouvaritakis
Publisher: Springer
ISBN: 3319248537
Category : Technology & Engineering
Languages : en
Pages : 387
Book Description
For the first time, a textbook that brings together classical predictive control with treatment of up-to-date robust and stochastic techniques. Model Predictive Control describes the development of tractable algorithms for uncertain, stochastic, constrained systems. The starting point is classical predictive control and the appropriate formulation of performance objectives and constraints to provide guarantees of closed-loop stability and performance. Moving on to robust predictive control, the text explains how similar guarantees may be obtained for cases in which the model describing the system dynamics is subject to additive disturbances and parametric uncertainties. Open- and closed-loop optimization are considered and the state of the art in computationally tractable methods based on uncertainty tubes presented for systems with additive model uncertainty. Finally, the tube framework is also applied to model predictive control problems involving hard or probabilistic constraints for the cases of multiplicative and stochastic model uncertainty. The book provides: extensive use of illustrative examples; sample problems; and discussion of novel control applications such as resource allocation for sustainable development and turbine-blade control for maximized power capture with simultaneously reduced risk of turbulence-induced damage. Graduate students pursuing courses in model predictive control or more generally in advanced or process control and senior undergraduates in need of a specialized treatment will find Model Predictive Control an invaluable guide to the state of the art in this important subject. For the instructor it provides an authoritative resource for the construction of courses.
Publisher: Springer
ISBN: 3319248537
Category : Technology & Engineering
Languages : en
Pages : 387
Book Description
For the first time, a textbook that brings together classical predictive control with treatment of up-to-date robust and stochastic techniques. Model Predictive Control describes the development of tractable algorithms for uncertain, stochastic, constrained systems. The starting point is classical predictive control and the appropriate formulation of performance objectives and constraints to provide guarantees of closed-loop stability and performance. Moving on to robust predictive control, the text explains how similar guarantees may be obtained for cases in which the model describing the system dynamics is subject to additive disturbances and parametric uncertainties. Open- and closed-loop optimization are considered and the state of the art in computationally tractable methods based on uncertainty tubes presented for systems with additive model uncertainty. Finally, the tube framework is also applied to model predictive control problems involving hard or probabilistic constraints for the cases of multiplicative and stochastic model uncertainty. The book provides: extensive use of illustrative examples; sample problems; and discussion of novel control applications such as resource allocation for sustainable development and turbine-blade control for maximized power capture with simultaneously reduced risk of turbulence-induced damage. Graduate students pursuing courses in model predictive control or more generally in advanced or process control and senior undergraduates in need of a specialized treatment will find Model Predictive Control an invaluable guide to the state of the art in this important subject. For the instructor it provides an authoritative resource for the construction of courses.