Author: R Singh
Publisher: Elsevier
ISBN: 1845695453
Category : Technology & Engineering
Languages : en
Pages : 581
Book Description
Weld cracks are unacceptable defects that can compromise the integrity of welded structures. Weld cracking can lead to structural failures which at best will require remedial action and at worst can lead to loss of life. Weld cracking in ferrous alloys reviews the latest developments in the design, evaluation, prevention and repair of weld cracks.Part one reviews the fundamentals as well as recent advances in the areas of welding technology, design and material selection for preventing weld cracking. Part two analyses weld crack behaviour, evaluation and repair of cracking/cracked welds. The book benefits from an extensive and robust chapter on the topic of NDE and quality control that was contributed by one of the most respected non-destructive evaluation and development groups in the world. Part three covers environment assisted weld cracking.With its distinguished editor and international team of contributors, Weld cracking in ferrous alloys is a valuable source of reference for all those concerned with improving the quality of welding and welded components. In the planning and development of this book, particular care has been taken to make the chapters suitable for people from other disciplines who need to understand weld cracking and failure. - Reviews the latest developments in the design, evaluation, prevention and repair of weld cracks - Assesses recent advances in welding technology, design and material selection - Analyses weld crack behaviour, evaluation and repair including environment assisted weld cracking
Weld Cracking in Ferrous Alloys
Author: R Singh
Publisher: Elsevier
ISBN: 1845695453
Category : Technology & Engineering
Languages : en
Pages : 581
Book Description
Weld cracks are unacceptable defects that can compromise the integrity of welded structures. Weld cracking can lead to structural failures which at best will require remedial action and at worst can lead to loss of life. Weld cracking in ferrous alloys reviews the latest developments in the design, evaluation, prevention and repair of weld cracks.Part one reviews the fundamentals as well as recent advances in the areas of welding technology, design and material selection for preventing weld cracking. Part two analyses weld crack behaviour, evaluation and repair of cracking/cracked welds. The book benefits from an extensive and robust chapter on the topic of NDE and quality control that was contributed by one of the most respected non-destructive evaluation and development groups in the world. Part three covers environment assisted weld cracking.With its distinguished editor and international team of contributors, Weld cracking in ferrous alloys is a valuable source of reference for all those concerned with improving the quality of welding and welded components. In the planning and development of this book, particular care has been taken to make the chapters suitable for people from other disciplines who need to understand weld cracking and failure. - Reviews the latest developments in the design, evaluation, prevention and repair of weld cracks - Assesses recent advances in welding technology, design and material selection - Analyses weld crack behaviour, evaluation and repair including environment assisted weld cracking
Publisher: Elsevier
ISBN: 1845695453
Category : Technology & Engineering
Languages : en
Pages : 581
Book Description
Weld cracks are unacceptable defects that can compromise the integrity of welded structures. Weld cracking can lead to structural failures which at best will require remedial action and at worst can lead to loss of life. Weld cracking in ferrous alloys reviews the latest developments in the design, evaluation, prevention and repair of weld cracks.Part one reviews the fundamentals as well as recent advances in the areas of welding technology, design and material selection for preventing weld cracking. Part two analyses weld crack behaviour, evaluation and repair of cracking/cracked welds. The book benefits from an extensive and robust chapter on the topic of NDE and quality control that was contributed by one of the most respected non-destructive evaluation and development groups in the world. Part three covers environment assisted weld cracking.With its distinguished editor and international team of contributors, Weld cracking in ferrous alloys is a valuable source of reference for all those concerned with improving the quality of welding and welded components. In the planning and development of this book, particular care has been taken to make the chapters suitable for people from other disciplines who need to understand weld cracking and failure. - Reviews the latest developments in the design, evaluation, prevention and repair of weld cracks - Assesses recent advances in welding technology, design and material selection - Analyses weld crack behaviour, evaluation and repair including environment assisted weld cracking
Hot Cracking Phenomena in Welds
Author: Thomas Böllinghaus
Publisher: Springer Science & Business Media
ISBN: 354027460X
Category : Technology & Engineering
Languages : en
Pages : 398
Book Description
Although the avoidance of hot cracking still represents a major topic in modern fabrication welding components, the phenomena have not yet been fully understood. Through the 20 individual contributions from experts all over the world the present state of knowledge about hot cracking during welding is defined, and the subject is approached from four different viewpoints. The first chapter provides an overview of the various hot cracking phenomena. Different mechanisms of solidification cracking proposed in the past decades are summarized and new insight is particularly given into the mechanism of ductility dip cracking. The effects of different alloying elements on the hot cracking resistance of various materials are shown in the second chapter and, as a special metallurgical effect, the initiation of stress corrosion cracking at hot cracks has been highlighted. The third chapter outlines how numerical analyses and other modelling techniques can be utilized to describe hot cracking phenomena and how such results might contribute to the explanation of the mechanisms. Various hot cracking test procedures are presented in the final chapter with a special emphasis on standardization. For the engineering and natural scientists in research and development the book provides both, new insight and a comprehensive overview of hot cracking phenomena in welds. The contributions additionally give numerous individual solutions and helpful advice for international welding engineers to avoid hot cracking in practice. Furthermore, it represents a very helpful tool for upper level metallurgical and mechanical engineering students.
Publisher: Springer Science & Business Media
ISBN: 354027460X
Category : Technology & Engineering
Languages : en
Pages : 398
Book Description
Although the avoidance of hot cracking still represents a major topic in modern fabrication welding components, the phenomena have not yet been fully understood. Through the 20 individual contributions from experts all over the world the present state of knowledge about hot cracking during welding is defined, and the subject is approached from four different viewpoints. The first chapter provides an overview of the various hot cracking phenomena. Different mechanisms of solidification cracking proposed in the past decades are summarized and new insight is particularly given into the mechanism of ductility dip cracking. The effects of different alloying elements on the hot cracking resistance of various materials are shown in the second chapter and, as a special metallurgical effect, the initiation of stress corrosion cracking at hot cracks has been highlighted. The third chapter outlines how numerical analyses and other modelling techniques can be utilized to describe hot cracking phenomena and how such results might contribute to the explanation of the mechanisms. Various hot cracking test procedures are presented in the final chapter with a special emphasis on standardization. For the engineering and natural scientists in research and development the book provides both, new insight and a comprehensive overview of hot cracking phenomena in welds. The contributions additionally give numerous individual solutions and helpful advice for international welding engineers to avoid hot cracking in practice. Furthermore, it represents a very helpful tool for upper level metallurgical and mechanical engineering students.
Hot Cracking Phenomena in Welds II
Author: Thomas Böllinghaus
Publisher: Springer Science & Business Media
ISBN: 3540786287
Category : Technology & Engineering
Languages : en
Pages : 458
Book Description
Failure of welded components can occur during service as well as during fabrication. Most common, analyses of the resistance of welded components against failure are targeted at crack avoidance. Such evaluations are increasingly carried out by modern weldability studies, i. e. considering interactions between the selected base and filler materials, structural design and welding process. Such weldability investigations are particularly targeted to prevent hot cracking, as one of the most common cracking phenomena occurring during weld fabrication. To provide an international information and discussion platform to combat hot cracking, an international workshop on Hot Cracking Phenomena in Welds has been created, based on an initiative of the Institute for Materials and Joining Technology at the Otto-von-Guericke University in Magdeburg and the Division V. 5 – Safety of Joined Components at the Federal Institute for Materials Research and Testing (BAM) in Berlin, Germany. The first workshop was organized in Berlin under the topics mechanisms and phenomena, metallurgy and materials, modelling and simulations as well as testing and standardization. It consisted of 20 individual contributions from eight countries, which were compiled in a book that found a very ready market, not only in the welding community. As a consequence of increasing interest, it has been decided to establish the Workshop on Hot Cracking Phenomena in Welds as a regular event every three years embedded in the International Institute of Welding (IIW). Attached to the IIW Commission IX and II Spring intermediate meetings, the second workshop was organized in March 2007.
Publisher: Springer Science & Business Media
ISBN: 3540786287
Category : Technology & Engineering
Languages : en
Pages : 458
Book Description
Failure of welded components can occur during service as well as during fabrication. Most common, analyses of the resistance of welded components against failure are targeted at crack avoidance. Such evaluations are increasingly carried out by modern weldability studies, i. e. considering interactions between the selected base and filler materials, structural design and welding process. Such weldability investigations are particularly targeted to prevent hot cracking, as one of the most common cracking phenomena occurring during weld fabrication. To provide an international information and discussion platform to combat hot cracking, an international workshop on Hot Cracking Phenomena in Welds has been created, based on an initiative of the Institute for Materials and Joining Technology at the Otto-von-Guericke University in Magdeburg and the Division V. 5 – Safety of Joined Components at the Federal Institute for Materials Research and Testing (BAM) in Berlin, Germany. The first workshop was organized in Berlin under the topics mechanisms and phenomena, metallurgy and materials, modelling and simulations as well as testing and standardization. It consisted of 20 individual contributions from eight countries, which were compiled in a book that found a very ready market, not only in the welding community. As a consequence of increasing interest, it has been decided to establish the Workshop on Hot Cracking Phenomena in Welds as a regular event every three years embedded in the International Institute of Welding (IIW). Attached to the IIW Commission IX and II Spring intermediate meetings, the second workshop was organized in March 2007.
Failure Mechanisms of Advanced Welding Processes
Author: X Sun
Publisher: Elsevier
ISBN: 1845699769
Category : Technology & Engineering
Languages : en
Pages : 331
Book Description
Many new, or relatively new, welding processes such as friction stir welding, resistance spot welding and laser welding are being increasingly adopted to replace or improve on traditional welding techniques. Before advanced welding techniques are employed, their potential failure mechanisms should be well understood and their suitability for welding particular metals and alloys in different situations should be assessed. Failure mechanisms of advanced welding processes provides a critical analysis of advanced welding techniques and their potential failure mechanisms.The book contains chapters on the following topics: Mechanics modelling of spot welds under general loading conditions and applications to fatigue life predictions, Resistance spot weld failure mode and weld performance for aluminium alloys, dual phase steels and TRIP steels, Fatigue behaviour of spot welded joints in steel sheets, Non-destructive evaluation of spot weld quality, Solid state joining - fundamentals of friction stir welding, Failure mechanisms in friction stir welds, Microstructure characteristics and mechanical properties of laser weld bonding of magnesium alloy to aluminium alloy, Fatigue in laser welds, Weld metal ductility and its influence on formability of tailor welded blanks, Joining of lightweight materials using reactive nanofoils, and Fatigue life prediction and improvements for MIG welded advanced high strength steel weldments.With its distinguished editor and international team of contributors, Failure mechanisms of advanced welding processes is a standard reference text for anyone working in welding and the automotive, shipbuilding, oil and gas and other metal fabrication industries who use modern and advanced welding processes. - Provides a critical analysis of advanced welding techniques and their potential failure mechanisms - Experts in the field survey a range of welding processes and examine reactions under various types of loading conditions - Examines the current state of fatigue life prediction of welded materials and structures in the context of spot welded joints and non-destructive evaluation of quality
Publisher: Elsevier
ISBN: 1845699769
Category : Technology & Engineering
Languages : en
Pages : 331
Book Description
Many new, or relatively new, welding processes such as friction stir welding, resistance spot welding and laser welding are being increasingly adopted to replace or improve on traditional welding techniques. Before advanced welding techniques are employed, their potential failure mechanisms should be well understood and their suitability for welding particular metals and alloys in different situations should be assessed. Failure mechanisms of advanced welding processes provides a critical analysis of advanced welding techniques and their potential failure mechanisms.The book contains chapters on the following topics: Mechanics modelling of spot welds under general loading conditions and applications to fatigue life predictions, Resistance spot weld failure mode and weld performance for aluminium alloys, dual phase steels and TRIP steels, Fatigue behaviour of spot welded joints in steel sheets, Non-destructive evaluation of spot weld quality, Solid state joining - fundamentals of friction stir welding, Failure mechanisms in friction stir welds, Microstructure characteristics and mechanical properties of laser weld bonding of magnesium alloy to aluminium alloy, Fatigue in laser welds, Weld metal ductility and its influence on formability of tailor welded blanks, Joining of lightweight materials using reactive nanofoils, and Fatigue life prediction and improvements for MIG welded advanced high strength steel weldments.With its distinguished editor and international team of contributors, Failure mechanisms of advanced welding processes is a standard reference text for anyone working in welding and the automotive, shipbuilding, oil and gas and other metal fabrication industries who use modern and advanced welding processes. - Provides a critical analysis of advanced welding techniques and their potential failure mechanisms - Experts in the field survey a range of welding processes and examine reactions under various types of loading conditions - Examines the current state of fatigue life prediction of welded materials and structures in the context of spot welded joints and non-destructive evaluation of quality
Friction Stir Welding
Author: Daniela Lohwasser
Publisher: Elsevier
ISBN: 1845697715
Category : Technology & Engineering
Languages : en
Pages : 437
Book Description
Friction stir welding (FSW) is a highly important and recently developed joining technology that produces a solid phase bond. It uses a rotating tool to generate frictional heat that causes material of the components to be welded to soften without reaching the melting point and allows the tool to move along the weld line. Plasticized material is transferred from the leading edge to trailing edge of the tool probe, leaving a solid phase bond between the two parts. Friction stir welding: from basics to applications reviews the fundamentals of the process and how it is used in industrial applications.Part one discusses general issues with chapters on topics such as basic process overview, material deformation and joint formation in friction stir welding, inspection and quality control and friction stir welding equipment requirements and machinery descriptions as well as industrial applications of friction stir welding. A chapter giving an outlook on the future of friction stir welding is included in Part one. Part two reviews the variables in friction stir welding including residual stresses in friction stir welding, effects and defects of friction stir welds, modelling thermal properties in friction stir welding and metallurgy and weld performance.With its distinguished editors and international team of contributors, Friction stir welding: from basics to applications is a standard reference for mechanical, welding and materials engineers in the aerospace, automotive, railway, shipbuilding, nuclear and other metal fabrication industries, particularly those that use aluminium alloys. - Provides essential information on topics such as basic process overview, materials deformation and joint formation in friction stir welding - Inspection and quality control and friction stir welding equipment requirements are discussed as well as industrial applications of friction stir welding - Reviews the variables involved in friction stir welding including residual stresses, effects and defects of friction stir welds, modelling thermal properties, metallurgy and weld performance
Publisher: Elsevier
ISBN: 1845697715
Category : Technology & Engineering
Languages : en
Pages : 437
Book Description
Friction stir welding (FSW) is a highly important and recently developed joining technology that produces a solid phase bond. It uses a rotating tool to generate frictional heat that causes material of the components to be welded to soften without reaching the melting point and allows the tool to move along the weld line. Plasticized material is transferred from the leading edge to trailing edge of the tool probe, leaving a solid phase bond between the two parts. Friction stir welding: from basics to applications reviews the fundamentals of the process and how it is used in industrial applications.Part one discusses general issues with chapters on topics such as basic process overview, material deformation and joint formation in friction stir welding, inspection and quality control and friction stir welding equipment requirements and machinery descriptions as well as industrial applications of friction stir welding. A chapter giving an outlook on the future of friction stir welding is included in Part one. Part two reviews the variables in friction stir welding including residual stresses in friction stir welding, effects and defects of friction stir welds, modelling thermal properties in friction stir welding and metallurgy and weld performance.With its distinguished editors and international team of contributors, Friction stir welding: from basics to applications is a standard reference for mechanical, welding and materials engineers in the aerospace, automotive, railway, shipbuilding, nuclear and other metal fabrication industries, particularly those that use aluminium alloys. - Provides essential information on topics such as basic process overview, materials deformation and joint formation in friction stir welding - Inspection and quality control and friction stir welding equipment requirements are discussed as well as industrial applications of friction stir welding - Reviews the variables involved in friction stir welding including residual stresses, effects and defects of friction stir welds, modelling thermal properties, metallurgy and weld performance
Condition Assessment of Aged Structures
Author: J K Paik
Publisher: Elsevier
ISBN: 1845695216
Category : Technology & Engineering
Languages : en
Pages : 552
Book Description
Any structural system in service is subject to age-related deterioration, leading to potential concerns regarding maintenance, health & safety, environmental and economic implications. Condition assessment of aged structures is an invaluable, single source of information on structural assessment techniques for marine and land-based structures such as ships, offshore installations, industrial plant and buildings. Topics covered include: - - Current practices and standards for structural condition assessment - - Fundamental mechanisms and advanced mathematical methods for predicting structural deterioration - - Residual strength assessment of deteriorated structures - - Inspection and maintenance of aged structures - - Reliability and risk assessment of aged structuresProfessionals from a broad range of disciplines will be able to gain a better understanding of current practices and standards for structural condition assessment or health monitoring, and what future trends might be. - Single source of information on structural assessment techniques for marine and land-based structures - Examines the residual strength and reliability of aged structures - Assesses current practices covering inspection, health monitoring and maintenance
Publisher: Elsevier
ISBN: 1845695216
Category : Technology & Engineering
Languages : en
Pages : 552
Book Description
Any structural system in service is subject to age-related deterioration, leading to potential concerns regarding maintenance, health & safety, environmental and economic implications. Condition assessment of aged structures is an invaluable, single source of information on structural assessment techniques for marine and land-based structures such as ships, offshore installations, industrial plant and buildings. Topics covered include: - - Current practices and standards for structural condition assessment - - Fundamental mechanisms and advanced mathematical methods for predicting structural deterioration - - Residual strength assessment of deteriorated structures - - Inspection and maintenance of aged structures - - Reliability and risk assessment of aged structuresProfessionals from a broad range of disciplines will be able to gain a better understanding of current practices and standards for structural condition assessment or health monitoring, and what future trends might be. - Single source of information on structural assessment techniques for marine and land-based structures - Examines the residual strength and reliability of aged structures - Assesses current practices covering inspection, health monitoring and maintenance
Hot Cracking Phenomena in Welds III
Author: John Lippold
Publisher: Springer Science & Business Media
ISBN: 3642168647
Category : Technology & Engineering
Languages : en
Pages : 439
Book Description
This is the third in a series of compendiums devoted to the subject of weld hot cracking. It contains 22 papers presented at the 3rd International Hot Cracking Workshop in Columbus, Ohio USA in March 2010. In the context of this workshop, the term “hot cracking” refers to elevated temperature cracking associated with either the weld metal or heat-affected zone. These hot cracking phenomena include weld solidification cracking, HAZ and weld metal liquation cracking, and ductility-dip cracking. The book is divided into three major sections based on material type; specifically aluminum alloys, steels, and nickel-base alloys. Each of these sections begins with a keynote paper from prominent researchers in the field: Dr. Sindo Kou from the University of Wisconsin, Dr. Thomas Böllinghaus from BAM and the University of Magdeburg, and Dr. John DuPont from Lehigh University. The papers contained within include the latest insight into the mechanisms associated with hot cracking in these materials and methods to prevent cracking through material selection, process modification, or other means. The three Hot Cracking Phenomena in Welds compendiums combined contain a total of 64 papers and represent the best collection of papers on the topic of hot cracking ever assembled.
Publisher: Springer Science & Business Media
ISBN: 3642168647
Category : Technology & Engineering
Languages : en
Pages : 439
Book Description
This is the third in a series of compendiums devoted to the subject of weld hot cracking. It contains 22 papers presented at the 3rd International Hot Cracking Workshop in Columbus, Ohio USA in March 2010. In the context of this workshop, the term “hot cracking” refers to elevated temperature cracking associated with either the weld metal or heat-affected zone. These hot cracking phenomena include weld solidification cracking, HAZ and weld metal liquation cracking, and ductility-dip cracking. The book is divided into three major sections based on material type; specifically aluminum alloys, steels, and nickel-base alloys. Each of these sections begins with a keynote paper from prominent researchers in the field: Dr. Sindo Kou from the University of Wisconsin, Dr. Thomas Böllinghaus from BAM and the University of Magdeburg, and Dr. John DuPont from Lehigh University. The papers contained within include the latest insight into the mechanisms associated with hot cracking in these materials and methods to prevent cracking through material selection, process modification, or other means. The three Hot Cracking Phenomena in Welds compendiums combined contain a total of 64 papers and represent the best collection of papers on the topic of hot cracking ever assembled.
Heat Exchanger Design Handbook
Author: Kuppan Thulukkanam
Publisher: CRC Press
ISBN: 9781420026870
Category : Science
Languages : en
Pages : 1142
Book Description
"This comprehensive reference covers all the important aspects of heat exchangers (HEs)--their design and modes of operation--and practical, large-scale applications in process, power, petroleum, transport, air conditioning, refrigeration, cryogenics, heat recovery, energy, and other industries. Reflecting the author's extensive practical experienc
Publisher: CRC Press
ISBN: 9781420026870
Category : Science
Languages : en
Pages : 1142
Book Description
"This comprehensive reference covers all the important aspects of heat exchangers (HEs)--their design and modes of operation--and practical, large-scale applications in process, power, petroleum, transport, air conditioning, refrigeration, cryogenics, heat recovery, energy, and other industries. Reflecting the author's extensive practical experienc
Heat Exchanger Design Handbook, Second Edition
Author: Kuppan Thulukkanam
Publisher: CRC Press
ISBN: 1439842124
Category : Technology & Engineering
Languages : en
Pages : 1275
Book Description
Completely revised and updated to reflect current advances in heat exchanger technology, Heat Exchanger Design Handbook, Second Edition includes enhanced figures and thermal effectiveness charts, tables, new chapter, and additional topics––all while keeping the qualities that made the first edition a centerpiece of information for practicing engineers, research, engineers, academicians, designers, and manufacturers involved in heat exchange between two or more fluids. See What’s New in the Second Edition: Updated information on pressure vessel codes, manufacturer’s association standards A new chapter on heat exchanger installation, operation, and maintenance practices Classification chapter now includes coverage of scrapped surface-, graphite-, coil wound-, microscale-, and printed circuit heat exchangers Thorough revision of fabrication of shell and tube heat exchangers, heat transfer augmentation methods, fouling control concepts and inclusion of recent advances in PHEs New topics like EMbaffle®, Helixchanger®, and Twistedtube® heat exchanger, feedwater heater, steam surface condenser, rotary regenerators for HVAC applications, CAB brazing and cupro-braze radiators Without proper heat exchanger design, efficiency of cooling/heating system of plants and machineries, industrial processes and energy system can be compromised, and energy wasted. This thoroughly revised handbook offers comprehensive coverage of single-phase heat exchangers—selection, thermal design, mechanical design, corrosion and fouling, FIV, material selection and their fabrication issues, fabrication of heat exchangers, operation, and maintenance of heat exchangers —all in one volume.
Publisher: CRC Press
ISBN: 1439842124
Category : Technology & Engineering
Languages : en
Pages : 1275
Book Description
Completely revised and updated to reflect current advances in heat exchanger technology, Heat Exchanger Design Handbook, Second Edition includes enhanced figures and thermal effectiveness charts, tables, new chapter, and additional topics––all while keeping the qualities that made the first edition a centerpiece of information for practicing engineers, research, engineers, academicians, designers, and manufacturers involved in heat exchange between two or more fluids. See What’s New in the Second Edition: Updated information on pressure vessel codes, manufacturer’s association standards A new chapter on heat exchanger installation, operation, and maintenance practices Classification chapter now includes coverage of scrapped surface-, graphite-, coil wound-, microscale-, and printed circuit heat exchangers Thorough revision of fabrication of shell and tube heat exchangers, heat transfer augmentation methods, fouling control concepts and inclusion of recent advances in PHEs New topics like EMbaffle®, Helixchanger®, and Twistedtube® heat exchanger, feedwater heater, steam surface condenser, rotary regenerators for HVAC applications, CAB brazing and cupro-braze radiators Without proper heat exchanger design, efficiency of cooling/heating system of plants and machineries, industrial processes and energy system can be compromised, and energy wasted. This thoroughly revised handbook offers comprehensive coverage of single-phase heat exchangers—selection, thermal design, mechanical design, corrosion and fouling, FIV, material selection and their fabrication issues, fabrication of heat exchangers, operation, and maintenance of heat exchangers —all in one volume.
Cracking in High-strength Steel Weldments
Author: P. A. Kammer
Publisher:
ISBN:
Category : Steel
Languages : en
Pages : 132
Book Description
Weldment cracking is a broad complex field. Even if one considers only cracking of steel weldments, the problems range from cracking at temperatures near the solidus during welding to cracking at room temperature days, weeks, or months after welding is completed. Numerous reports of investigations in this field are contained in the published and unpublished literature. However, most of these reports cover only a particular problem in a specific area of the broad field of weldment cracking. This review attempts to cover the major aspects of the entire field of weldment cracking. Necessarily, the review is for the most part general, only being specific in a few instances to illustrate a point. (Author).
Publisher:
ISBN:
Category : Steel
Languages : en
Pages : 132
Book Description
Weldment cracking is a broad complex field. Even if one considers only cracking of steel weldments, the problems range from cracking at temperatures near the solidus during welding to cracking at room temperature days, weeks, or months after welding is completed. Numerous reports of investigations in this field are contained in the published and unpublished literature. However, most of these reports cover only a particular problem in a specific area of the broad field of weldment cracking. This review attempts to cover the major aspects of the entire field of weldment cracking. Necessarily, the review is for the most part general, only being specific in a few instances to illustrate a point. (Author).