Classical and Multidimensional Lorentz Spaces PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Classical and Multidimensional Lorentz Spaces PDF full book. Access full book title Classical and Multidimensional Lorentz Spaces by René Erlin Castillo. Download full books in PDF and EPUB format.

Classical and Multidimensional Lorentz Spaces

Classical and Multidimensional Lorentz Spaces PDF Author: René Erlin Castillo
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110750376
Category : Mathematics
Languages : en
Pages : 152

Book Description
This work is solely dedicated to the study of both the one variable as well as the multidimensional Lorentz spaces covering the theory of Lebesgue type spaces invariant by rearrangement. The authors provide proofs in full detail for most theorems. The self-contained text is valuable for advanced students and researchers.

Classical and Multidimensional Lorentz Spaces

Classical and Multidimensional Lorentz Spaces PDF Author: René Erlin Castillo
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110750376
Category : Mathematics
Languages : en
Pages : 152

Book Description
This work is solely dedicated to the study of both the one variable as well as the multidimensional Lorentz spaces covering the theory of Lebesgue type spaces invariant by rearrangement. The authors provide proofs in full detail for most theorems. The self-contained text is valuable for advanced students and researchers.

Hardy Operators, Function Spaces and Embeddings

Hardy Operators, Function Spaces and Embeddings PDF Author: David E. Edmunds
Publisher: Springer Science & Business Media
ISBN: 3662077310
Category : Mathematics
Languages : en
Pages : 334

Book Description
Classical Sobolev spaces, based on Lebesgue spaces on an underlying domain with smooth boundary, are not only of considerable intrinsic interest but have for many years proved to be indispensible in the study of partial differential equations and variational problems. Many developments of the basic theory since its inception arise in response to concrete problems, for example, with the (ubiquitous) sets with fractal boundaries. The theory will probably enjoy substantial further growth, but even now a connected account of the mature parts of it makes a useful addition to the literature. Accordingly, the main themes of this book are Banach spaces and spaces of Sobolev type based on them; integral operators of Hardy type on intervals and on trees; and the distribution of the approximation numbers (singular numbers in the Hilbert space case) of embeddings of Sobolev spaces based on generalised ridged domains. This timely book will be of interest to all those concerned with the partial differential equations and their ramifications. A prerequisite for reading it is a good graduate course in real analysis.

Interpolation of Operators

Interpolation of Operators PDF Author: Colin Bennett
Publisher: Academic Press
ISBN: 0080874487
Category : Mathematics
Languages : en
Pages : 489

Book Description
This book presents interpolation theory from its classical roots beginning with Banach function spaces and equimeasurable rearrangements of functions, providing a thorough introduction to the theory of rearrangement-invariant Banach function spaces. At the same time, however, it clearly shows how the theory should be generalized in order to accommodate the more recent and powerful applications. Lebesgue, Lorentz, Zygmund, and Orlicz spaces receive detailed treatment, as do the classical interpolation theorems and their applications in harmonic analysis.The text includes a wide range of techniques and applications, and will serve as an amenable introduction and useful reference to the modern theory of interpolation of operators.

Composition Operators on Spaces of Analytic Functions

Composition Operators on Spaces of Analytic Functions PDF Author: Carl C. Cowen Jr.
Publisher: Routledge
ISBN: 1351459139
Category : Mathematics
Languages : en
Pages : 404

Book Description
The study of composition operators lies at the interface of analytic function theory and operator theory. Composition Operators on Spaces of Analytic Functions synthesizes the achievements of the past 25 years and brings into focus the broad outlines of the developing theory. It provides a comprehensive introduction to the linear operators of composition with a fixed function acting on a space of analytic functions. This new book both highlights the unifying ideas behind the major theorems and contrasts the differences between results for related spaces. Nine chapters introduce the main analytic techniques needed, Carleson measure and other integral estimates, linear fractional models, and kernel function techniques, and demonstrate their application to problems of boundedness, compactness, spectra, normality, and so on, of composition operators. Intended as a graduate-level textbook, the prerequisites are minimal. Numerous exercises illustrate and extend the theory. For students and non-students alike, the exercises are an integral part of the book. By including the theory for both one and several variables, historical notes, and a comprehensive bibliography, the book leaves the reader well grounded for future research on composition operators and related areas in operator or function theory.

Function Spaces in Analysis

Function Spaces in Analysis PDF Author: Krzysztof Jarosz
Publisher: American Mathematical Soc.
ISBN: 1470416948
Category : Education
Languages : en
Pages : 301

Book Description
This volume contains the proceedings of the Seventh Conference on Function Spaces, which was held from May 20-24, 2014 at Southern Illinois University at Edwardsville. The papers cover a broad range of topics, including spaces and algebras of analytic functions of one and of many variables (and operators on such spaces), spaces of integrable functions, spaces of Banach-valued functions, isometries of function spaces, geometry of Banach spaces, and other related subjects.

Operator Theory in Function Spaces

Operator Theory in Function Spaces PDF Author: Kehe Zhu
Publisher: American Mathematical Soc.
ISBN: 0821839659
Category : Mathematics
Languages : en
Pages : 368

Book Description
This book covers Toeplitz operators, Hankel operators, and composition operators on both the Bergman space and the Hardy space. The setting is the unit disk and the main emphasis is on size estimates of these operators: boundedness, compactness, and membership in the Schatten classes. Most results concern the relationship between operator-theoretic properties of these operators and function-theoretic properties of the inducing symbols. Thus a good portion of the book is devoted to the study of analytic function spaces such as the Bloch space, Besov spaces, and BMOA, whose elements are to be used as symbols to induce the operators we study. The book is intended for both research mathematicians and graduate students in complex analysis and operator theory. The prerequisites are minimal; a graduate course in each of real analysis, complex analysis, and functional analysis should sufficiently prepare the reader for the book. Exercises and bibliographical notes are provided at the end of each chapter. These notes will point the reader to additional results and problems. Kehe Zhu is a professor of mathematics at the State University of New York at Albany. His previous books include Theory of Bergman Spaces (Springer, 2000, with H. Hedenmalm and B. Korenblum) and Spaces of Holomorphic Functions in the Unit Ball (Springer, 2005). His current research interests are holomorphic function spaces and operators acting on them.

Morrey Spaces

Morrey Spaces PDF Author: Yoshihiro Sawano
Publisher: CRC Press
ISBN: 1000064077
Category : Mathematics
Languages : en
Pages : 316

Book Description
Morrey spaces were introduced by Charles Morrey to investigate the local behaviour of solutions to second order elliptic partial differential equations. The technique is very useful in many areas in mathematics, in particular in harmonic analysis, potential theory, partial differential equations and mathematical physics. Across two volumes, the authors of Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s discuss the current state of art and perspectives of developments of this theory of Morrey spaces, with the emphasis in Volume II focused mainly generalizations and interpolation of Morrey spaces. Features Provides a ‘from-scratch’ overview of the topic readable by anyone with an understanding of integration theory Suitable for graduate students, masters course students, and researchers in PDE's or Geometry Replete with exercises and examples to aid the reader’s understanding

Classical Fourier Analysis

Classical Fourier Analysis PDF Author: Loukas Grafakos
Publisher: Springer Science & Business Media
ISBN: 0387094326
Category : Mathematics
Languages : en
Pages : 494

Book Description
The primary goal of this text is to present the theoretical foundation of the field of Fourier analysis. This book is mainly addressed to graduate students in mathematics and is designed to serve for a three-course sequence on the subject. The only prerequisite for understanding the text is satisfactory completion of a course in measure theory, Lebesgue integration, and complex variables. This book is intended to present the selected topics in some depth and stimulate further study. Although the emphasis falls on real variable methods in Euclidean spaces, a chapter is devoted to the fundamentals of analysis on the torus. This material is included for historical reasons, as the genesis of Fourier analysis can be found in trigonometric expansions of periodic functions in several variables. While the 1st edition was published as a single volume, the new edition will contain 120 pp of new material, with an additional chapter on time-frequency analysis and other modern topics. As a result, the book is now being published in 2 separate volumes, the first volume containing the classical topics (Lp Spaces, Littlewood-Paley Theory, Smoothness, etc...), the second volume containing the modern topics (weighted inequalities, wavelets, atomic decomposition, etc...). From a review of the first edition: “Grafakos’s book is very user-friendly with numerous examples illustrating the definitions and ideas. It is more suitable for readers who want to get a feel for current research. The treatment is thoroughly modern with free use of operators and functional analysis. Morever, unlike many authors, Grafakos has clearly spent a great deal of time preparing the exercises.” - Ken Ross, MAA Online

Pre-Riesz Spaces

Pre-Riesz Spaces PDF Author: Anke Kalauch
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110475448
Category : Mathematics
Languages : en
Pages : 443

Book Description
This monograph develops the theory of pre-Riesz spaces, which are the partially ordered vector spaces that embed order densely into Riesz spaces. Concepts from Riesz space theory such as disjointness, ideals, and bands are extended to pre-Riesz spaces. The analysis revolves around embedding techniques, including the Riesz completion and the functional representation. In the same spirit, norms and topologies on a pre-Riesz space and their extensions to the Riesz completion are examined. The generalized concepts are used to investigate disjointness preserving operators on pre-Riesz spaces and related notions. The monograph presents recent results as well as being an accessible introduction to the theory of partially ordered vector spaces and positive operators. Contents A primer on ordered vector spaces Embeddings, covers, and completions Seminorms on pre-Riesz spaces Disjointness, bands, and ideals in pre-Riesz spaces Operators on pre-Riesz spaces

Composition Operators

Composition Operators PDF Author: Joel H. Shapiro
Publisher: Springer Science & Business Media
ISBN: 1461208874
Category : Mathematics
Languages : en
Pages : 229

Book Description
The study of composition operators links some of the most basic questions you can ask about linear operators with beautiful classical results from analytic-function theory. The process invests old theorems with new mean ings, and bestows upon functional analysis an intriguing class of concrete linear operators. Best of all, the subject can be appreciated by anyone with an interest in function theory or functional analysis, and a background roughly equivalent to the following twelve chapters of Rudin's textbook Real and Complex Analysis [Rdn '87]: Chapters 1-7 (measure and integra tion, LP spaces, basic Hilbert and Banach space theory), and 10-14 (basic function theory through the Riemann Mapping Theorem). In this book I introduce the reader to both the theory of composition operators, and the classical results that form its infrastructure. I develop the subject in a way that emphasizes its geometric content, staying as much as possible within the prerequisites set out in the twelve fundamental chapters of Rudin's book. Although much of the material on operators is quite recent, this book is not intended to be an exhaustive survey. It is, quite simply, an invitation to join in the fun. The story goes something like this.